Fujitsu Home Security System MB91401 User Manual

FUJITSU SEMICONDUCTOR  
DATA SHEET  
Prelminary  
2004.11.12  
32-Bit Proprietary Microcontroller  
LSI Network Security System  
MB91401  
DESCRIPTION  
The MB91401 is a network security LSI incorporating a Fujitsu’s 32-bit, FR-family RISC microcontroller with 10/  
100Base-T MAC Controller, encryption function and authentication function. The LSI contains an encryption  
authentication hardware accelerator that boosts the LSI’s performance for encryption and authentication commu-  
nication (IKE/IPsec/SSL) to be demanded further.  
The MAC controller has a packet filtering function that reduces the load on the CPU for an increasing amount of  
packet processing. In addition, the board has the External interface for high-speed data communication with  
various external hosts, USB ports as general-purpose interfaces, and various card interfaces.  
FEATURES  
Encryption and authentication processing by hardware accelerator function  
The LSI performs processing five times faster than by the conventional combination of encryption/authentication  
hardware macros and software or about 400 times faster than by software only. In addition, CPU processing load  
factor to be involved in the encryption and the authentication processing can be decreased to 1/5 or less.  
Also, the LSI uses the embedded accelerator to execute that public-key encryption algorithm about 100 times  
faster than by software processing, which generally puts an extremely heavy load microcontrollers.  
(Continued)  
PACKAGE  
244-pin plastic FBGA  
(BGA-240P-M01)  
 
Prelminary  
2004.11.12  
MB91401  
(Continued)  
CARD Interface (CompactFlash)  
The CompactFlash interface is a memory and I/O mode correspondence. It corresponds to the I/O of data such  
as not only the memory card but also the communication cards.  
I2C Interface  
• Master/slave sending and receiving  
• For standard mode (100 Kbps Max)  
3
 
Prelminary  
2004.11.12  
MB91401  
PIN ASSIGNMENT  
INDEX  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
A
B
C
D
E
F
1
2
3
4
5
6
7
8
9
72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55  
73 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 54  
74 137 192 191 190 189 188 187 186 185 184 183 182 181 180 179 120 53  
75 138 193 240 239 238 237 236 235 234 233 232 231 230 229 178 119 52  
76 139 194  
77 140 195  
78 141 196  
79 142 197  
80 143 198  
228 177 118 51  
227 176 117 50  
226 175 116 49  
225 174 115 48  
224 173 114 47  
223 172 113 46  
222 171 112 45  
221 170 111 44  
220 169 110 43  
219 168 109 42  
218 167 108 41  
G
H
J
(TOP-VIEW)  
(SUB240W)  
K
L
10 81 144 199  
11 82 145 200  
12 83 146 201  
13 84 147 202  
14 85 148 203  
15 86 149 204  
M
N
P
R
T
16 87 150 205 206 207 208 209 210 211 212 213 214 215 216 217 166 107 40  
17 88 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 106 39  
18 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 38  
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37  
U
V
W
: signal (204 lines)  
: PLLVDD (1 line) 199  
: PLLVSS (1 line) 197  
: VDDI (12 lines) 195, 200, 203, 207, 211, 215, 1219, 223  
227, 231, 235, 239  
: VDDE (9 lines) 83, 196, 202, 208, 214, 220, 226, 232, 238  
: VSS (16lins)  
1, 19, 37, 55, 193, 198, 201, 205, 209  
213, 217, 225, 229, 233, 237  
4
 
Prelminary  
2004.11.12  
MB91401  
PIN NUMBER TABLE  
Pin Number  
1
Pin name  
VSS  
Pin Number  
61  
Pin Number  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
Pin Number  
Pin name  
UDP  
Pin name  
EXD11  
EXD14  
CFCD2X  
UCLKSEL  
CFWAITX  
N.C.  
Pin name  
SDA  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
2
CFD15  
ICLK  
62  
CFWEX  
CFCE1X  
CFIORDX  
CFA1  
CFA5  
CFA8  
CFD0  
CFD3  
CFD7  
CFD10  
CFD13  
CFD14  
ICS2  
USBINS  
UDM  
3
63  
4
ICS0  
64  
CFRESET  
CFREGX  
CFA0  
CFA3  
CFA7  
CFA10  
CFD2  
CFD5  
CFD9  
VSS  
5
TDI  
65  
6
UCLK48  
TMS  
66  
7
67  
CFOEX  
CFCE2X  
CFIOWRX  
CFA2  
CFA6  
CFA9  
CFD1  
CFD4  
CFD8  
CFD11  
CFD12  
ICD0  
8
XINI  
68  
9
PLLBYPAS  
OSCEB  
TEST0  
OSCEA  
TEST2  
SCK0  
SIN0  
69  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
70  
71  
72  
73  
74  
ICD2  
75  
ICS1  
VDDI  
INT5  
76  
BREAKI  
CLKSEL  
TRST  
MDI0  
VDDE  
PLLVSS  
VSS  
A3  
77  
A2  
78  
VSS  
79  
ICD1  
PLLVDD  
VDDI  
A4  
80  
MDI2  
ICD3  
A7  
81  
PLLSET0  
TEST1  
VDDE  
TEST3  
SIN1  
TDO  
VSS  
A10  
82  
MDI1  
VDDE  
VDDI  
A13  
83  
VPD  
A16  
84  
PLLSET1  
OSCC  
TCK  
INITXI  
VSS  
MCLKO  
A21  
85  
86  
SOUT0  
INT6  
NMIX  
VDDI  
RDX  
87  
PLLS  
WRX2  
CSX0  
N.C.  
88  
A6  
SCK1  
SOUT1  
INT7  
VDDE  
VSS  
89  
A5  
90  
A8  
A0  
D0  
91  
A11  
A9  
VDDI  
D2  
92  
A14  
A12  
A1  
D5  
93  
A17  
A15  
VSS  
D9  
94  
A19  
A18  
VDDE  
VDDI  
D12  
95  
A22  
A20  
D15  
96  
WRX3  
WRX1  
CSX1  
N.C.  
A23  
D8  
VSS  
97  
RDY  
VSS  
D17  
98  
WRX0  
CSX6  
N.C.  
D26  
D18  
99  
VDDI  
D20  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
D1  
VDDE  
VSS  
D23  
D3  
N.C.  
D27  
D6  
D4  
MDCLK  
VDDI  
TXEN  
TXD0  
RXD0  
TXCLK  
RXD2  
RXCLK  
EXIS16  
EXCSX  
EXD0/GPIO0  
EXD4/GPIO4  
EXD7/GPIO7  
EXD10  
VSS  
D10  
D7  
D13  
D11  
MDIO  
VSS  
D16  
D14  
D19  
D22  
VDDE  
VDDI  
D21  
D25  
D24  
D29  
EXD3/GPIO3  
VSS  
D28  
D31  
D30  
TXD2  
TXD3  
RXDV  
COL  
CFVS1X  
VDDI  
TXD1  
RXD1  
RXER  
RXD3  
RXCRS  
EXA  
VDDE  
VSS  
DREQRX  
DREQTX  
EXWRX  
EXD2/GPIO2  
EXD6/GPIO6  
EXD9  
EXD15  
CFVCC3EX  
VDDI  
EXD12  
EXD13  
CFCD1X  
SCL  
CFA4  
VSS  
EXRDX  
EXD1/GPIO1  
EXD5/GPIO5  
EXD8  
VDDE  
VDDI  
CFRDY  
CFD6  
5
 
Prelminary  
2004.11.12  
MB91401  
PIN DESCRIPTION  
[SYSTEM]  
[ETHERNET MAC CONTROLLER]  
XINI  
INITXI  
1
1
1
3
3
TXCLK  
1
4
1
1
1
4
1
1
1
1
1
TXD3 to TXD0  
TXEN  
NMIX  
INT7 to INT5  
MDI2 to MDI0  
[OSCILLATOR]  
RXCLK  
RXER  
RXD3 to RXD0  
RXDV  
OSCEA  
OSCC  
OSCEB  
1
1
1
RXCRS  
COL  
MDCLK  
MDIO  
MB91401  
[PLL CONTROL]  
PLLS  
PLLSET1, PLLSET0  
PLLBYPAS  
CLKSEL  
[ICE]  
1
2
1
1
[EXTERNAL IF]  
EXCSX  
EXA  
1
1
EXD15 to EXD0/GPIO7 to GPIO0 16  
Signal line  
196 pin  
39 pin  
BREAKI  
ICS2 to ICS0  
ICLK  
1
3
1
4
EXRDX  
1
1
1
1
1
EXWRX  
DREQRX  
DREQTX  
EXIS16  
Power Supply/  
GND  
ICD3 to ICD0  
[JTAG]  
[USB IF]  
TCK  
1
1
1
1
1
TRST  
USBINS  
UCLK48  
UCLKSEL  
UDP  
1
1
1
1
1
TMS  
N.C.  
5 pin  
TDI  
TDO  
[TEST]  
UDM  
[CARD IF]  
VPD  
TEST3 to TEST0  
[UART]  
1
4
CFD15 to CFD0  
CFA10 to CFA0  
CFCE2X, CFCE1X  
CFREGX  
CFCD2X, CFCD1X  
CFVS1X  
16  
11  
2
SIN1, SIN0  
2
2
2
1
BGA-240P-M01  
SOUT1, SOUT0  
SCK1, SCK0  
[MEMORY IF]  
2
1
CFRDY (CFIREQ)  
CFWAITX  
1
A23 to A0 24  
D31 to D0 32  
RDX  
WRX3 to WRX0  
CSX0, CSX1, CSX6  
RDY  
1
CFVCC3EX  
CFRESET  
1
1
4
3
1
1
1
CFOEX  
1
CFWEX  
1
CFIORDX  
1
CFIOWRX  
1
MCLKO  
[I2C IF]  
SDA  
SCL  
1
1
6
 
Prelminary  
2004.11.12  
MB91401  
SYSTEM (9 pin)  
Polarity  
Circuit  
Pin name  
Pin no.  
I/O  
Function/application  
Clock input pin  
Input pin of clock generated in clock generator. 10 MHz to  
50 MHz frequency can be input.  
XINI  
8
IN  
D
Reset input pin  
This pin inputs a signal to initialize the LSI.  
Nega-  
tive  
When turning on the power supply, apply “0” to the pin until  
the clock signal input to the CLKIN pin becomes stable.  
All built-in registers and external pins are initialized, and the  
built-in PLL is stopped when “0” is asserted to INITXI.  
INITXI  
NMIX  
204  
206  
IN  
D
Nega-  
tive  
NMI input pin  
Non-Maskable Interrupt signal  
IN  
IN  
D
D
External interrupt input pins  
INT7  
INT6  
INT5  
150  
87  
16  
These pins input an external interrupt request signal.  
For external interrupt detection, set the ENIR, EIRR and  
ELVR registers of the FR core.  
MDI2  
MDI1  
MDI0  
80  
142  
79  
Mode pins  
IN  
D
These pins determine the operation mode of the LSI.  
Always set this bit to “001”.  
OSCILLATOR (3 pin)  
Pin name Pin no.  
Polarity  
Circuit  
I/O  
Function/application  
Crystal oscillation input pin  
Input pin of crystal oscillation cell.  
OSCEA  
12  
145  
10  
IN  
G
Crystal oscillation control input pin  
Oscillation control pin of crystal oscillation cell.  
“0” : Oscillation  
Nega-  
tive  
OSCC  
IN  
D
G
“1” : Oscillation stop  
Crystal oscillation output pin  
Output pin of crystal oscillation cell.  
OSCEB  
OUT  
PLL CONTROL (5 pin)  
Pin name Pin no.  
Polarity  
Circuit  
I/O  
Function/application  
PLL/through mode (reset) switching input pin  
“0” : PLL through mode (oscillation stop)  
“1” : PLL oscillation mode  
PLLS  
147  
144  
81  
IN  
D
Input clock division ratio select input pin  
“0” : Input clock direct  
“1” : Input clock divided by 2  
PLLSET1  
PLLSET0  
PLLBYPAS  
CLKSEL  
IN  
IN  
IN  
IN  
D
D
D
D
Division ratio select input to PLL FB pin  
“0” : Two dividing frequency is input to the terminal FB.  
“1” : Four dividing frequency is input to the terminal FB.  
PLL bypass select input pin  
“0” : PLL used  
“1” : PLL unused  
9
Input clock switching input pin  
“0” : XINI (External clock)  
77  
“1” : Built-in OSC generating clock  
7
 
Prelminary  
2004.11.12  
MB91401  
ICE (9 pin)  
Polarity  
Circuit  
Pin name  
Pin no.  
I/O  
Function/application  
Emulator break request pin  
BREAKI  
76  
IN  
D
This pin inputs the emulator break request when an ICE is  
connected.  
ICS2  
ICS1  
ICS0  
74  
75  
4
Emulator chip status pins  
These pins output the emulator status when an ICE is  
connected.  
OUT  
I/O  
F
B
Emulator clock pin  
This pin serves as the emulator clock pin when an ICE is  
connected.  
ICLK  
3
ICD3  
ICD2  
ICD1  
ICD0  
140  
194  
139  
138  
Emulator data pins  
These pins serve as the emulator data bus when an ICE is  
connected.  
I/O  
B
JTAG (5 pin)  
Polarity  
Circuit  
Pin name  
Pin no.  
I/O  
Function/application  
JTAG test clock pin  
TCK  
146  
IN  
E
Note : Please input “1” when unused.  
JTAG test reset pin  
TRST  
TMS  
78  
7
IN  
IN  
E
E
Note : Please input “0” when unused.  
TAP controller mode select pin  
Note : Please input “1” when unused.  
JTAG test data input pin  
JTAG test serial data input pin.  
TDI  
5
IN  
E
F
Note : Please input “1” when unused.  
JTAG test data output pin  
JTAG test serial data output pin  
TDO  
141  
OUT  
TEST (5 pin)  
Polarity  
Circuit  
Pin name  
Pin no.  
I/O  
Function/application  
Mode pin  
Input “0” to this pin.  
VPD  
143  
IN  
TEST3  
TEST2  
TEST1  
TEST0  
84  
13  
82  
11  
Test pin  
Input “0000” to this pin.  
IN  
D
Note : Don’t set other than above description.  
8
 
Prelminary  
2004.11.12  
MB91401  
UART (6 pin)  
Polarity  
Circuit  
Pin name  
Pin no.  
I/O  
Function/application  
Serial data input pins  
SIN1  
SIN0  
85  
15  
IN  
D
Serial data input pin of UART built-in FR core.  
SOUT1  
SOUT0  
149  
86  
Serial data output pins  
Serial data output pin of UART built-in FR core.  
OUT  
I/O  
F
B
SCK1  
SCK0  
148  
14  
Serial clock I/O pins  
Serial clock input/output pin of UART built-in FR core.  
MEMORY IF (66 pin)  
Pin name Pin no.  
A23  
Polarity  
Circuit  
I/O  
Function/application  
156  
95  
A22  
A21  
A20  
A19  
A18  
A17  
A16  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
26  
155  
94  
154  
93  
24  
153  
92  
23  
152  
91  
22  
Address output pins  
24 bits address signal pin.  
OUT  
B
151  
90  
A8  
A7  
21  
A6  
88  
A5  
89  
A4  
20  
A3  
17  
A2  
18  
A1  
A0  
212  
210  
(Continued)  
9
 
Prelminary  
2004.11.12  
MB91401  
(Continued)  
Polarity  
Circuit  
Pin name  
Pin no.  
I/O  
Function/application  
D31  
169  
110  
168  
109  
42  
218  
167  
108  
41  
166  
107  
40  
106  
39  
38  
105  
36  
165  
104  
35  
164  
103  
34  
D30  
D29  
D28  
D27  
D26  
D25  
D24  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
Data input/output pins  
32 bits data input/output signal pin.  
I/O  
B
D8  
D7  
D6  
D5  
216  
163  
102  
33  
D4  
D3  
D2  
162  
101  
32  
D1  
D0  
100  
31  
CSX6  
CSX1  
CSX0  
159  
98  
29  
Chip select output pins  
3-bit chip select signal pin.  
Output the “L” level when accessing to external memory.  
Nega-  
tive  
OUT  
OUT  
B
B
Read strobe output pin  
Read strobing signal pin.  
Output the “L” level when read accessing.  
Nega-  
tive  
RDX  
27  
WRX3  
WRX2  
WRX1  
WRX0  
96  
28  
97  
Write strobing output pins  
Write strobing signal pin.  
Output the “L” level when write accessing.  
Nega-  
tive  
OUT  
B
158  
Memory clock output pin  
Clock for peripheral resources pin.  
MCLKO  
RDY  
25  
OUT  
IN  
F
External RDY input pin  
When the external bus is not completed, the bus cycle can  
be extended by inputting “0”.  
Posi-  
tive  
157  
D
10  
 
Prelminary  
2004.11.12  
MB91401  
ETHERNET MAC CONTROLLER (17 pin)  
Polarity  
Circuit  
Pin name  
Pin no.  
I/O  
Function/application  
Clock input for reception pin  
RXCLK  
48  
IN  
D
MII sync signal during reception. The frequency is 2.5 MHz  
at 10 Mbps and 25 MHz at 100 Mbps.  
Receive error input pin  
It is recognized that there is an error in the reception packet  
when “1” is input from the PHY device at receiving.  
Posi-  
tive  
RXER  
RXDV  
RXCRS  
113  
172  
115  
IN  
IN  
IN  
D
D
D
Posi-  
tive  
Receive data valid input pin  
It is recognized that receive data is effective.  
Career sense input pin  
The state that the reception or the transmission is done is  
recognized.  
Posi-  
tive  
RXD3  
RXD2  
RXD1  
RXD0  
114  
47  
112  
45  
Receive data input pins  
4-bit data input from PHY device.  
IN  
IN  
D
D
Collision detection input pin  
Posi-  
tive  
When TXEN signal is active and “1”, the collision is  
recognized. The collision is not recognized without these  
conditions.  
COL  
173  
Clock input for transfer pin  
TXCLK  
TXEN  
46  
43  
IN  
D
F
It becomes synchronous of MII when transmitting. The  
frequency is 2.5 MHz at 10 Mbps and 25 MHz at 100 Mbps.  
Transfer enable output pin  
It is shown that effective data is on the TXD bus. It is output  
synchronizing with TXCLK.  
Posi-  
tive  
OUT  
TXD3  
TXD2  
TXD1  
TXD0  
171  
170  
111  
44  
Transfer data output pins  
4-bit data bus sent to the PHY device. It is output  
synchronizing with TXCLK.  
OUT  
F
SMI clock output pin  
MDCLK  
MDIO  
222  
224  
OUT  
I/O  
F
B
SMI IF clock pin  
Connect to SMI clock input pin of PHY device.  
SMI data input/output pin  
Connect to SMI data of PHY device.  
11  
 
Prelminary  
2004.11.12  
MB91401  
EXTERNAL IF (23 pin)  
Polarity  
Circuit  
Pin name  
Pin no.  
I/O  
Function/application  
External chip select input pin  
Nega-  
tive  
EXCSX  
50  
IN  
D
Chip select input pin from external host.  
External address input pin  
Address input pin from external host.  
“0” : Register select  
EXA  
116  
IN  
D
B
“1” : FIFO data select  
EXD15  
EXD14  
EXD13  
EXD12  
EXD11  
EXD10  
EXD9  
180  
122  
57  
56  
121  
54  
External data input/output pins  
The I/O terminal of data bus bit of bit15 to bit8 with an  
external host.  
I/O  
179  
120  
EXD8  
EXD7/GPIO7  
EXD6/GPIO6  
EXD5/GPIO5  
EXD4/GPIO4  
EXD3/GPIO3  
EXD2/GPIO2  
EXD1/GPIO1  
EXD0/GPIO0  
53  
178  
119  
52  
228  
177  
118  
51  
External data/GPIO input/output pins  
The I/O terminal of data bus bit of bit7 to bit0 with an  
external host.  
Note : When EXIS16 “0” input, it becomes the I/O terminal  
of GPIO7 to GPIO0.  
I/O  
B
Nega-  
tive  
External read strobing input pin  
Read strove input pin from external host  
EXRDX  
EXWRX  
117  
176  
IN  
IN  
D
D
Nega-  
tive  
External write strobing input pin  
Write strove input pin from external host  
External data bus width select input pin  
Bit width select pin of EXD  
“0” : 8 bit  
EXIS16  
49  
IN  
D
(Note : EXD15 to EXD8 are enabled.)  
“1” : 16 bit  
Nega-  
tive  
External reception data request output pin  
Recordable data to reception FIFO is shown.  
DREQRX  
DREQTX  
174  
175  
OUT  
OUT  
F
F
External transfer data request output pin  
It is shown that there are data in transmission register and  
transmission FIFO.  
Nega-  
tive  
12  
 
Prelminary  
2004.11.12  
MB91401  
USB IF (5 pin)  
Polarity  
Circuit  
Pin name  
Pin no.  
I/O  
Function/application  
USB data D + (differential) pin  
I/O signal pin on the plus side of the USB data.  
Use the LSI with 25 to 30 (27 recommended)  
external series load resistors, 1.5 kpull-up resistors and  
about 100 kresistors. Input “0” when the USB macro is  
unused.  
UDP  
61  
I/O  
C
USB data D (differential) pin  
I/O signal pin on the minus side of the USB data.  
Use the LSI with 25 to 30 (27 recommended)  
external series load resistors, 1.5 kpull-up resistors and  
about 100 kresistors. Input “0” when the USB macro is  
unused.  
UDM  
183  
182  
6
I/O  
IN  
C
D
D
USB insert input pin  
USB socket input detection pin. Be sure to input “0” when  
not using USB macro.  
USBINS  
UCLK48  
48 MHz input (external clock input) pin  
This pin inputs an external 48-MHz clock signal.  
The USB macro operates based on this clock. Input the  
clock with high accuracy (as not only LSI but also a device)  
more than 2500 ppm. Input “0” when the USB macro is un-  
used.  
IN  
USB clock select pin  
Clock select pin using for USB macro  
“0” : Using internal clock  
“1” : Using UCLK48  
UCLKSEL  
124  
IN  
D
13  
 
Prelminary  
2004.11.12  
MB91401  
CARD IF (41 pin)  
Polarity  
Circuit  
Pin name  
Pin no.  
I/O  
Function/application  
CFD15  
2
CFD14  
CFD13  
CFD12  
CFD11  
CFD10  
CFD9  
CFD8  
CFD7  
CFD6  
CFD5  
CFD4  
CFD3  
CFD2  
CFD0  
CFD0  
73  
72  
137  
136  
71  
192  
135  
70  
240  
191  
134  
69  
190  
133  
68  
CF data input/output pins  
I/O data/status/command signal pin to CompactFlash card  
side  
I/O  
B
CFA10  
CFA9  
CFA8  
CFA7  
CFA6  
CFA5  
CFA4  
CFA3  
CFA2  
CFA1  
CFA0  
189  
132  
67  
188  
131  
66  
236  
187  
130  
65  
CF address 10 to 0 output pins  
Address output CFA10 to CFA0 pins to CompactFlash card  
side  
OUT  
B
186  
CF card enable output pin  
Byte access output pin to CompactFlash card side  
Note : Supported for access to CFD7 to CFD0.  
When “L” level is output, odd number byte access of the  
word is shown.  
Nega-  
tive  
CFCE2X  
128  
OUT  
OUT  
B
B
CF card enable output pin  
Byte access output pin to CompactFlash card side  
Note : Supported for access to CFD7 to CFD0.  
When “L” level is output at word access, even number byte  
access of the word is shown.  
Nega-  
tive  
CFCE1X  
63  
When the byte is accessed, the even number byte and odd  
number byte access become possible because CFA0 and  
CFCE2X are combined and used by it.  
CF Attribute/Common switching output pin  
Attribute/Common switching output pin to CompactFlash  
card side  
“H” : Common Memory select  
“L” : Attribute Memory select  
Nega-  
tive  
CFREGX  
CFCD2X  
185  
123  
OUT  
IN  
B
E
Card connection detect input pin : CFCD2X  
Nega-  
tive  
Checking connection pin of the socket and CompactFlash  
card. It is shown that the CompactFlash card was connected  
when this signal and CFCD1X are both input by “0”.  
(Continued)  
14  
 
Prelminary  
2004.11.12  
MB91401  
(Continued)  
Polarity  
Circuit  
Pin name  
Pin no.  
I/O  
Function/application  
Card connection detect input pin : CFCD1X  
Nega-  
tive  
Checking connection pin of the socket and CompactFlash  
card. It is shown that the CompactFlash card was connected  
when this signal and CFCD2X are both input by “0”.  
CFCD1X  
CFVS1X  
58  
IN  
E
CF side GND input pin  
GND level detection pin from CompactFlash side.  
The “0” input to the pin assumes that the CompactFlash  
card can operate at 3.3 V, setting the CFVCC3EX pin to the  
“L” level.  
Nega-  
tive  
230  
IN  
IN  
E
E
CF ready input pin : memory card  
Ready input pin from CompactFlash memory card side  
“1” : Ready  
“0” : Busy  
(CF interrupt : I/O card)  
Interrupt request pin of CompactFlash I/O card. It is shown  
the interrupt request was done from the I/O card when input  
to this signal by “0”.  
Posi-  
tive  
(Nega-  
tive)  
CFRDY  
(CFIREQ)  
60  
Cycle wait input pin during CF execution  
Cycle wait input pin from CompactFlash card side  
“0” : It is shown that there is a wait demand at the cycle  
under execution.  
“1” : It is shown that there is no wait demand at the cycle  
under execution.  
Nega-  
tive  
CFWAITX  
125  
234  
IN  
E
B
CF3.3 V power enable output pin  
Outputs “L” level when the CompactFlash card is operable  
at 3.3 V.  
The output signal enables 3.3-volt power supply to the  
CompactFlash card. The pin outputs “L” level only when the  
CFVS1X pin detects “0”; otherwise, the pin outputs “H”.  
Nega-  
tive  
CFVCC3EX  
OUT  
CF reset output pin  
Reset output pin to CompactFlash card side.  
CompactFlash is reset at “H” output.  
Posi-  
tive  
CFRESET  
CFOEX  
184  
127  
OUT  
OUT  
A
B
CF read strobe output pin  
Read strove output pin to CompactFlash card (memory  
mode and Attribute memory area)  
Nega-  
tive  
CF register write output pin  
Write clock output pin to CompactFlash card (register write  
and Card Configuration Register area).  
The register write is executed at the rising edge from “L” to  
“H”.  
Nega-  
tive  
CFWEX  
62  
OUT  
B
Nega-  
tive  
CFIO read strobing output pin  
Read strove output pin to CompactFlash card (I/O mode)  
CFIORDX  
CFIOWRX  
64  
OUT  
OUT  
B
B
Nega-  
tive  
CFIO write strobing output pin  
Write strove output pin to CompactFlash card (I/O mode)  
129  
15  
 
Prelminary  
2004.11.12  
MB91401  
I2C IF (2 pin)  
Polarity  
Circuit  
Pin name  
SDA  
SCL  
Pin no.  
I/O  
Function/application  
Serial data line input/output pin  
I2C bus data I/O pin  
181  
59  
I/O  
B
Serial clock line input/output pin  
I2C bus clock I/O pin  
I/O  
B
Power Supply/GND (39 pin)  
Polarity  
Circuit  
Pin name  
Pin no.  
I/O  
Function/application  
Power  
supply  
APLL dedicated power supply pin  
This pin is for 1.8 V power supply pin.  
PLLVDD  
199  
V-E  
PLLVSS  
VDDE  
197  
GND  
V-S APLL dedicated GND Pin  
83  
196  
202  
208  
214  
220  
226  
232  
238  
Power  
supply  
V-E 3.3 V power supply pin  
195  
200  
203  
207  
211  
215  
219  
223  
227  
231  
235  
239  
Power  
supply  
VDDI  
V-E 1.8 V power supply pin  
1
19  
37  
55  
193  
198  
201  
205  
209  
213  
217  
221  
225  
229  
233  
237  
VSS  
GND  
V-S GND Pin  
16  
 
Prelminary  
2004.11.12  
MB91401  
I/O CIRCUIT TYPE  
Type  
Circuit  
Remarks  
Digital output  
Digital output  
With pull/down  
CMOS level output  
CMOS level input  
Value of pull-down resistance =  
approx. 33 k(Typ)  
A
Digital input  
Digital output]  
Digital output  
CMOS level output  
CMOS level input  
B
Digital input  
D+ input  
Dinput  
D+  
D−  
Differential input  
Full D+ output  
Full Doutput  
C
USB I/O  
Low D+ output  
Low Doutput  
Direction  
Speed  
(Continued)  
17  
 
Prelminary  
2004.11.12  
MB91401  
(Continued)  
Type  
Circuit  
Remarks  
D
E
CMOS level input  
Digital input  
With pull-up  
CMOS level input  
Value of pull-up resistance =  
approx. 33 k(Typ)  
Digital input  
Digital output  
Digital output  
F
CMOS level output  
Oscillation output  
Control  
G
Oscillation circuit  
18  
 
Prelminary  
2004.11.12  
MB91401  
HANDLING DEVICES  
Preventing Latch-up  
When a voltage that is higher than VDDE and a voltage that is lower than VSS are impressed to the input terminal  
and the output terminal in CMOS IC or the voltage that exceeds ratings between VDDE to VSS is impressed, the  
latch-up phenomenon might be caused. If latch-up occurs, the supply current increases rapidly, sometimes  
resulting in thermal breakdown of the device. Use meticulous care not to let any voltage exceed the maximum  
rating during device operation.  
Separation of power supply pattern  
Analog PLL (APLL at the following) is installed in this LSI. The power supply for VCO and for digital is separated  
in LSI so that the oscillation characteristic of APLL may receive the influence of power supply variation.  
Therefore, the power supply is recommended to be separated also on the mounting base.  
Separation of power supply pattern (recommended)  
Take measures to reduce impedance, for example, by using as wide a power pattern as possible.  
The recommendation example is shown as follows.  
• For two power supplies (for digital and for VCO)  
It is advisable to provide a digital power-supply (a) and VCO power-supply (b) and connect them to the LSI’s  
equivalents, respectively.  
Figure For 2-power supply (for digital and for VCO)  
VDD (for digital)  
LSI  
PLLVDD (for VCO)  
APLL  
Logic part  
Power  
supply  
(a)  
Power  
supply  
(b)  
PLLVSS  
VSS  
• For the common power supply  
To share a single power-supply for digital and VCO uses, it is advisable to separate the output into the digital  
and VCO wiring patternsand connect them to the LSI.  
19  
 
Prelminary  
2004.11.12  
MB91401  
Figure When you share the power supply for digital and for VCO  
VDD (for digital)  
LSI  
PLLVDD (for VCO)  
APLL  
Logic part  
Power  
supply  
(a)  
PLLVSS  
VSS  
Treatment of the unused pins  
Leaving unused input pins open results in a malfunction, so process the pull-up or pull-down.  
Treatment of OPEN pins  
Be sure to use open pins in open state.  
Treatment of output pins  
A large current may flow to an output pin left connected to the power-supply, another output pin, or to a high  
capacitance load. Leaving the output pin that way for an extended period of time degrades the device. Use  
meticulous care in using the device not to exceed the absolute maximum rating.  
About Mode (MDI2 to MDI0, VPD) pin and Test (TEST3 to TEST0) pin  
Connect these pins directly to VDDE or VSS. To prevent the device from entering test mode accidentally due to  
noise, minimize the lengths of the patterns between individual mode pins and VDDE or VSS on the PC board  
as possible and connect them with as low an impedance as possible.  
About power supply pins  
In products with multiple VDDE, VDDI or VSS pins, the pins of the same potential are internally connected in  
the device to avoid abnormal operations including latch-up. However you must connect the pins to external power  
supply and a ground line to lower the electro-magnetic emission level to prevent abnormal operation strobe  
signals caused by the rise in the ground level, and to conform to the total output current rating.  
The power pins should be connected to VDDE, VDDI and VSS of this device at the lowest possible impedance  
from the current supply source.  
It is also advisable to connect a ceramic bypass capacitor of approximately 0.1 µF between VDDE and VSS,  
and between VDDI and VSS near this device.  
Crystal Oscillator Circuit  
Noise near the OSCEA terminal may cause the MB91401 to malfunction.  
Design the circuit board so that OSCEA terminal, OSCEB terminal and the crystal oscillator, and the bypass  
capacitor to ground are located as close to the device as possible.  
It is strongly recommended to design the PC board artwork with the OSCEA terminal and OSCEB terminal  
surrounded by ground plane because stable operation can be expected with such a layout.  
20  
 
Prelminary  
2004.11.12  
MB91401  
CONNECTED SPECIFICATION OF MB91401 AND ICE  
Recommended type and circuit configuration of the emulator interface connector mounting on the user system,  
attention when designing and wiring regulation are shown.  
When the flat cable is used, the combination of the connectors with housing should be selected.  
Recommended connector type  
Attached cable  
FPC cable  
Part number  
Remarks  
FH10A-30S-1SH (Maker : Hirose Electric Co., Ltd.) With latch  
Circuit composition  
Please put the dumping resistance 15 in the series in the ICLK terminal signal because of the stability of  
operation when connecting it with ICE. Resistance must be mounted near the terminal ICLK of this LSI when  
you design the printed wiring board.  
Emulator interface connector  
MB2198-0 and MB2197-01 side  
MCU for evaluation  
MB91401  
VCC  
VCC  
1
UVCC  
FUSE  
3
15 Ω  
ICLK  
ICLK  
ICS2 to ICS0  
ICS2 to ICS0  
ICD3 to ICD0  
ICD3 to ICD0  
BREAKI  
RST  
BREAKI  
INITXI  
10 kΩ  
2
xRSTIN  
(Open)  
Reset output  
circuit  
FR  
GND  
VSS  
*1 : Use the line (inter connect) to flow the rating current or more.  
*2 : The change circuit might become necessary, and refer to “Precaution when designing”.  
*3 : Mount resistance near the terminal ICLK of MB91401.  
21  
 
Prelminary  
2004.11.12  
MB91401  
Precaution when designing  
When evaluation MCU on the user system is operated in the state that the emulator is not connected, should  
be treated as follow each input terminal of evaluation MCU connected with the emulator interface on the user  
system.  
Therefore, note that the switch circuit etc, might become necessary in the user system when you design.  
The terminal processing in each emulator interface is shown as follows.  
Pin treatment of emulator interface (DSU-3)  
Evaluation MCU terminal name  
Pin treatment  
To be connected the RST terminal with the reset output circuit in the  
user system.  
RST  
Others  
To open.  
Emulator interface wiring regulations  
Signal line name  
Wiring regulations  
ICLK  
The total wiring length of each signal (From evaluation MCU pin to the  
emulator interface connector pin) is made within 50 mm.  
The difference of the total wiring length of each signal makes within 2 cm  
and the total wiring length of ICLK is the shortest.  
ICS2 to ICS0  
ICD3 to ICD0  
BREAKI  
Wire the pattern with capacity more than the ratings current.  
Each power supply and GND may cause a short-circuit or reverse connec-  
tion in between by a wrong connection of a probe. Insert a protection circuit  
such as a fuse into each power supply pattern to safeguard it.  
UVCC  
GND  
Connect directly with a power supply system pattern such as grandopran.  
Reference document  
Please match and refer to the following manual for the connection with ICE.  
• DSU-FR Emulator MB2198-01 Hardware Manual  
• FR20/30 series MB2197-01 Hardware Manual  
22  
 
Prelminary  
2004.11.12  
MB91401  
JTAG  
The JTAG function is installed in this LSI.  
Note that the terminal INITXI should be input in "L" when using JTAG.  
Notes when quartz vibrator is mounted  
The crystal oscillation circuit built into this LSI operates by the following compositions.  
MB91401  
OSC  
OSCEB  
Rr  
OSCC  
OSCEA  
Installation  
when over tone  
oscillates  
Quartz  
vibrator  
L
C1  
C2  
C3  
Pin description  
Pin name  
OSCC  
Function  
Oscillation control terminal of crystal oscillation cell (OSC)  
Input terminal of crystal oscillation cell (OSC)  
OSCEA  
OSCEB  
Output terminal of crystal oscillation cell (OSC)  
When OSCCL is input, the OSCEA and OSCEB oscillate at the natural frequency of the crystal oscillator and  
propagated into the LSI.  
Circuit constant on external substrate  
Circuit constants  
Description  
External load capacity  
C1, C2, C3  
L
Inductance  
Rr  
Dumping resistance (addition if necessary)  
23  
 
Prelminary  
2004.11.12  
MB91401  
Reference Value  
Oscillation frequency  
C1, C2  
C3  
None  
L
Rr  
to 30 MHz  
5 pF to 33 pF  
5 pF to 15 pF  
None  
None  
None  
20 MHz to 50 MHz  
10 nF approx.  
1 µH approx.  
It is necessary to add C3/L depending on a basic wave and the over tone characteristic of the oscillator of the  
20 MHz to 30 MHz belt.  
Note : These reference values are standards. The constant changes according to the characteristic of the quartz  
vibrator used. Therefore, we will recommend the initial evaluation that uses the evaluation sample to the  
decision of the circuit constant. Please contact FUJITSU representatives about the evaluation sample.  
Notes when encryption/authentication accelarator is used  
When using the encryption/authentication installed in this LSI, it is necessary to the following notes.  
32-bit data bus  
The encryption/authentication accelerator fetches data from the area storing data to be subject to encryption/  
authentication and encrypts or authenticates the data without CPU intervention. In the encryption processing,  
write is done in the area where it wants to store the data after the encryption is processed.  
MB91401  
32bit  
Data Bus  
encryption/  
authentication  
RAM  
accelerator  
At the storage destination of  
encryption/authentication  
processing data  
Holding request withdrawal demand function OFF  
When accessing to the storage destination of encryption/authentication processing data, the encryption/authen-  
tication accelerator should hold an internal bus of this LSI.  
Therefore, when the encryption/authentication accelerator are used, it should be set that the holding request  
withdrawal doesn’t demand.  
Please set the HRCL register that sets the interrupt level that becomes the standard of the holding request  
withdrawal demand generation to "10000" in the FR core.  
For NMIs, the hold request cancel request occurs regardless of the HRCL register setting. When the encryption/  
authentication accelerator is used, therefore, NMI input may cause encryption/authentication to fail to result  
correctly. In that case, the correspondence said that it will execute the encryption/authentication processing  
under execution again is necessary.  
24  
 
Prelminary  
2004.11.12  
MB91401  
Notes as device  
Treatment of Unused Input Pins  
It causes the malfunction that the unused input terminal is made open, and do the processing such as 1 stack  
or 0 stacks.  
About Mode pins (MDI2 to MDI0)  
Connect these pins with the input buffer by 1 to 1 to prevent the malfunction by the noise, and connect directly  
to VDD or VSS outside of ASIC.  
Operation at start-up  
Specify set initialization reset (INIT) with the terminal INITXI when you turn on the power supply.  
Moreover, connect "L" level input to the terminal INITXI until the input clock is steady.  
About watch dog timer  
The watchdog timer function of this macro monitors a program to check whether it delays a reset within a certain  
period of time. If the program runs out of control and fails to delay the reset, the watchdog timer function resets  
the CPU.  
Therefore, it keeps operating until reset is specified when the watchdog timer function is made effective once.  
Exceptionally, the reset postponement is automatically done under the condition that the program execution of  
CPU stops. Refer to the paragraph of the function explanation of the watchdog timer for the condition of applying  
to this exception.  
There is a possibility that watchdog reset is not generated when entering the above-mentioned state by the  
reckless driving of the system. In that case, please specify reset (INIT) from external INITX terminal.  
Restrictions  
Clock control block  
• Secure the clock stability waiting time at "L" input to INITXI.  
• When entering the standby mode, use the following sequences after using the synchronous standby mode  
(TBCR:set at the bit8 SYNCS bit of timebase counter control register).  
(LDI  
#value_of_standby, R0) ; Value_of standby is write data to STCR.  
(LDI  
#_STCR, R12)  
R0, @R12  
; _STCR is address (481H) of STCR.  
; Write to standby control register (STCR).  
; STCR read for synchronous standby  
; Dummy re-read of STCR  
STB  
LDUB  
LDUB  
NOP  
NOP  
NOP  
NOP  
NOP  
@R12, R0  
@R12, R0  
In addition, set the I-flag and the ILM and ICR registers to branch to an interrupt handler when the interrupt  
handler triggers the microcontroller to return from the standby mode.  
• Please do not do the following when the monitor debugger is used.  
• Please do not set the break point to the above-mentioned instruction row.  
25  
 
Prelminary  
2004.11.12  
MB91401  
CPU  
• The instruction fetch is not done from D-bus, and does not set the code area on D-bus RAM.  
• Set neither stack area nor the vector table on the instruction RAM.  
• The following operations may be performed when the instruction immediately followed by a DIVOU/DIVOS  
instruction is (a) halted by a user interrupt or NMI, (b) single-stepped, or (c) breaks in response to a data event  
or emulator menu:  
(1) The D0 and D1 flags are updated in advance.  
(2) An EIT handling routine (user interrupt, NMI, or emulator) is executed.  
(3) Upon returning from the EIT, the DIVOU/DIVOS instruction is executed and the D0 and D1 flags are  
updated to the same values as in (1) .  
• The following operations are performed when the ORCCR/STILM/MOVRi and PS instructions are executed.  
(1) The PS register is updated in advance.  
(2) Executing of EIT processing routine (user interrupt NMI)  
(3) Upon returning from the EIT, the above instructions are executed and the PS register is updated to the  
same value as in (1) .  
• Since some instructions manipulate the PS register earlier, the following exceptions may cause the interrupt  
handler to break or the PS flag to update its display setting when the debugger is being used. As the micro-  
controller is designed to carry out reprocessing correctly upon returning from such an EIT event in either case,  
it performs operations before and after the EIT as specified.  
1. When (a) user interrupt and NMI are accepted or (b) step is executed or (c) break is done by the data  
event or the menu of the emulator in the instruction immediately before the instruction of DIV0U/DIV0S,  
the following operation might be done.  
(1) The D0 and D1 flags are updated in advance.  
(2) An EIT handling routine (user interrupt, NMI, or emulator) is executed.  
(1) Upon returning from the EIT, the DIVOU/DIVOS instruction is executed and the D0 and D1 flags are  
updated to the same values as in (3) .  
2. When ORCCR, STILM, MOV Ri, and PS each instruction is executed to permit interrupt with the user  
interrupt and the NMI factor generated, the following operation is done.  
(1) The PS register is updated in advance.  
(2) The EIT processing routine (user interrupt, NMI or emulator) is executed.  
(3) Upon returning from the EIT, the above instructions are executed and the PS register is updated to  
the same value as in (1).  
• Do not access the data to the cache memory at the control register of the instruction cash and RAM mode  
immediately before the instruction of RETI.  
• If one of the instructions listed below is executed, the SSP or USP* value is not used as the R15 value and,  
as a result, an incorrect value is written to memory.  
• Only ten following kinds of instructions that specify R15 as Ri correspond.  
AND  
R15, @Rj ANDH R15, @Rj ANDB  
R15, @Rj  
OR  
R15, @Rj ORH R15, @Rj ORB  
R15, @Rj  
EOR  
R15, @Rj EORH R15, @Rj EORB R15, @Rj  
XCHB @Rj, R15  
* : As for R15, there are no realities. When R15 is accessed from the program, SSP or USP is accessed by the  
state of "S" flag of the PS register. Please specify general registers other than R15 when ten above-mentioned  
instructions are described by the assembler.  
26  
 
Prelminary  
2004.11.12  
MB91401  
External bus interface  
• When the bus width of the area set up as little endian is 32-bit, confine to word (32-bit) access when accessing  
the relevant area.  
• When enabling prefetch to the area set to the Little endian, give the access to the corresponding area as word  
(32 bits) access limitation. In the byte and the half word access, it is not possible to access it correctly.  
DMA  
• Do not transfer DMA to instruction RAM.  
Bit Search Module  
• BSD0, BSD1, and the BDSC register are only the word accesses.  
27  
 
Prelminary  
2004.11.12  
MB91401  
NOTES OF DEBUG  
Step execution of RETI instruction  
In an environment where interrupts frequently occur during single-step execution, only the relevant interrupt  
processingroutinesareexecutedrepeatedlyduringsingle-stepexecutionoftheRETIinstruction. Thiswillprevent  
the main routine and low-interrupt-level programs from being executed.  
Do not execute step of RETI instruction for escape.  
When the relevant interrupt routine no longer requires being debugged, disable the relevant interrupt and perform  
debugging.  
Operand break  
Do not set the access which is used for area, including the address of system stack pointer, to the target of data  
event break.  
Interrupt handler to NMI request (tool)  
To prevent the malfunction because of the noise problem of DSU pin when ICE is unconnected, the following  
programs are added to the interrupt handler by the cause flag, which is only set by the break request from ICE.  
ICE can be used even if this program is added.  
Location to added  
The following interrupt handler  
Interrupt resource  
Interrupt number  
Offset  
: NMI request (tool)  
: 13 (decimal), 0D (hexadecimal)  
: 3C8H  
TBR is default address. : 000FFFC8H  
Additional program  
STM (R0, R1)  
LDI #B00H, R0 ; B00H is address of the break resource register.  
LDI #0, R1  
STB R1, @R0 ; Clear the break resource register.  
LDM (R0, R1)  
RETI  
Trace mode  
If the trace mode is set to "Full trace mode" during debug (in full trace mode, built-in FIFO is used as output  
buffer, the trace memory of the main body of ICE is used, and the trace data lost is not occurred), the electric  
current is increased and D-busDMA access may be lost.  
Also, the trace data lost may be occurred.  
To take the measures, do not set full trace mode.  
Simultaneous generation of a software break and a user interrupt/NMI  
When a software break and a user interrupt/NMI occur simultaneously, the emulator debugger may react as  
follows.  
• The debugger stops pointing to a location other than the programmed breakpoints.  
• The halted program is not re-executed correctly.  
When these problems are occurred, not only the software break, the hardware break should also be used. Do  
not set the break to the corresponding location when using monitor debugger.  
28  
 
Prelminary  
2004.11.12  
MB91401  
BLOCK DIAGRAM  
OSC  
FR core  
E
Crystal Unit  
CLKIN  
CLK  
Cont  
D-RAM (8 KB)  
I-Cach (4 KB)  
DMAC  
USB CLK (48 MHz)  
R
PLL  
B
T
Serial IF  
(2ch)  
UART  
INT  
Timer  
DSU  
DSU IF  
PHY  
INT/NMI  
Authentication macro  
LAN controller  
10/100 Ethernet  
MAC Controller  
IPsec Accelerator  
(IKE Accelerator)  
DES/3DES  
HMAC-MD5/SHA1  
DH  
L3/L4 Filtering  
USB Function  
Rev2.0FS  
USB IF  
CARD IF  
CompactFlash IF  
I2C Bus  
External IF  
GPIO  
Ext. IF/  
PORT  
I2C IF  
MEMORY IF  
MB91401  
FLASH  
SRAM  
FR core : CPU, U-Timer, UART, Timer, Interrupt controller, DMAC, Bit search, External interrupt, Memory_IF,  
Data-RAM, Cache, Bus controller  
Peripheral resources : LAN, External_IF, GPIO, Card, Encryption/Authentication, I2C, USB (Peripheral resource  
is connected to bus of bus controller. )  
29  
 
Prelminary  
2004.11.12  
MB91401  
MEMORY SPACE  
Memory space  
The FR family has 4 GByte of logical addresses (232 address) which can be linearly accessed by the CPU.  
Direct Addressing Areas  
The following address space areas are used as I/O areas.  
These areas are called direct addressing areas, in which the address of an operand can be specified directly  
during an instruction.  
The direct addressing area varies as shown below depending on the size of access data:  
byte data access  
half word data access  
word data access  
: 0-0FFH  
: 0-1FFH  
: 0-3FFH  
Memory Map  
The memory space of the macro consists of the following areas.  
0000 0000H  
0000 0400H  
0001 0000H  
0002 0000H  
0003 F800H  
Direct Addressing Areas  
Refer to I/O Map  
I/O  
I/O  
I-bus RAM 4 KB  
(and its mirror)  
Access disallowed area  
D-bus RAM 8 KByte  
0004 0000H  
External area  
FFFF FFFFH  
30  
 
Prelminary  
2004.11.12  
MB91401  
GENERAL PURPOSE REGISTERS  
32 bits  
Initial Value:  
R0  
R1  
XXXX XXXXH  
R12  
R13  
R14  
R15  
AC  
FP  
SP  
XXXX XXXXH  
0000 0000H  
Registers R0 to R15 are general-purpose registers. The registers are used as the accumulator and memory  
access pointers for CPU operations.  
Of these 16 registers, the registers listed below are intended for special applications, for which some instructions  
are enhanced.  
R13: Virtual accumulator  
R14: frame pointer  
R15:Stack pointer  
The initial values of R0 to R14 after a reset are indeterminate. R15 is initialized to 00000000H (SSP value).  
31  
 
Prelminary  
2004.11.12  
MB91401  
MODE SETTINGS  
The FR family uses the mode pins (MDI2 to MDI0) and the mode register (MODR) to set the operation mode.  
Mode Pins  
Three mode pins MDI[2], MDI[1], and MDI[0] are used to specify a mode vector fetch or test mode.  
Mode pins  
Reset vector  
access area  
Mode name  
Remarks  
MDI2 to MDI0  
0 0 0  
Reserved  
0 0 1  
external ROM mode vector  
User circuit test  
Reserved  
External  
Bus width is set by the mode data.  
FR stops (with clock signal supplied).  
0 1 0  
0 1 1  
1 0 0  
Reserved  
1 0 1  
Reserved  
1 1 0  
Reserved  
1 1 1  
Reserved  
Setting MDI2 to MDI0 to "010", USRTEST is set to "1" and the device operates in the user circuit test mode. The  
FR71 core is suspended in the user circuit test mode while SYSCLK and MCLKO are operating. The reserved  
modes include the FR71 core test mode. In this case, the signal at the FRTEST pin becomes "1" and enters the  
FR71 core test mode. If the FRTEST pin = "1", that circuit configuration is required which allows the separately  
defined pins of the FR71 core to be controlled and monitored from the outside of the chip.  
Mode Register (MODR)  
The data written to the mode register (MODR) by hardware using a mode vector fetch is called mode data.  
When this register is set by hardware, the CPU operates in the operation mode corresponding to the register  
setting.  
The mode register is set only by an INIT-level reset cause. The user program cannot access this register.  
However, as an exception, when the macro shifts to emulation mode by INTE instruction, or shifts to emulation  
mode by a break at a debug using ICE, this register is mapped at 0000_07FDH. Select this function when using  
ICE, perform the mode data setting before the program loading by writing a appropriate value to this register.  
Note : No data is existed in the address (0000_07FFH ) in the mode register of the FR family.  
Register  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
Initial Value  
MODR  
WTH1 WTH0  
XXXXXXXXB  
Operation mode setting bits  
[bit7 to bit2] Reserved bit  
Be sure to set this bit to “000000”. Setting them to any other value may result in an unpredictable operation.  
32  
 
Prelminary  
2004.11.12  
MB91401  
[bit1, bit0] WTH1, WTH0 (Bus width setting bits)  
These bits specify the bus width. The value of the bits is set in the DBW1 and DBW0 bits in ACR0 (CSO area).  
Set these bits to a value other than “11”.  
WTH1  
WTH0  
Function  
Remarks  
External bus mode  
External bus mode  
External bus mode  
0
0
1
1
0
1
0
1
8-bit bus width  
16-bit bus width  
32-bit bus width  
Setting disabled  
Operation mode  
In the operation mode, there are a bus mode and an access mode.  
Bus mode  
Access mode  
32-bit bus width  
16-bit bus width  
8-bit bus width  
External ROM  
bus  
Bus mode  
In bus mode, the operations of internal ROM and the external access functions are controlled according to the  
mode setting pins (MD2 to MD0) and the values of mode data.  
Although the FR71 architecture supports this bus mode, this macro cannot use the single-chip or internal ROM/  
external bus mode but can use the external ROM/external bus mode only.  
Access mode  
Access mode indicates the mode that controls the external data bus width, and is specified by the WTH1/WTH0  
bits, and the DBW1/DBW0 bits within ACR0 to ACR7 (Area Configuration Registers).  
Bus mode  
The FR family has three bus modes described below. Please refer to “MEMORY SPACE” for details.  
33  
 
Prelminary  
2004.11.12  
MB91401  
I/O MAP  
This shows the location of the various peripheral resource registers in the memory space.  
[How to read the table]  
Register  
Address  
Block  
+ 0  
+ 1  
+ 2  
+ 3  
0000_0000H  
|
Reserved  
Ext Int  
0000_003CH  
EIRR [R/W]  
00000000  
ENIR [R/W]  
00000000  
ELVR [R/W]  
00000000 00000000  
0000_0040H  
Read/Write attribute  
Initial value after a reset  
Register name (First-column register at address 4n; second-column register  
at address 4n + 2)  
Left most register address (When accessing it by word, the register of  
column 1 is positioned on the MSB side of data.)  
Note : Initial values of register bits are represented as follows :  
“1” : Initial Value “1”  
“0” : Initial Value “0”  
“X” : Initial Value “X”  
“-” : Access prohibited in reserved area.  
Register  
Address  
Block  
+ 0  
+ 1  
+ 2  
+ 3  
0000_0000H  
to  
Reserved  
0000_003CH  
EIRR [R/W]  
00000000  
ENIR [R/W]  
00000000  
ELVR [R/W]  
00000000 00000000  
0000_0040H  
0000_0044H  
0000_0048H  
0000_004CH  
0000_0050H  
0000_0054H  
0000_0058H  
0000_005CH  
Ext Int  
DICR [R/W]  
-------0  
HRCL [R/W]  
0-11111  
DLYI/I-unit  
TMRLR0 [W]  
XXXXXXXX XXXXXXXX  
TMR0 [R]  
XXXXXXXX XXXXXXXX  
Reload Timer 0  
Reload Timer 1  
TMCSR0 [R/W]  
----0000 00000000  
TMRLR1 [W]  
XXXXXXXX XXXXXXXX  
TMR1 [R]  
XXXXXXXX XXXXXXXX  
TMCSR1 [R/W]  
----0000 00000000  
TMRLR2 [W]  
XXXXXXXX XXXXXXXX  
TMR2 [R]  
XXXXXXXX XXXXXXXX  
Reload Timer 2  
(Continued)  
TMCSR2 [R/W]  
----0000 00000000  
34  
 
Prelminary  
2004.11.12  
MB91401  
Register  
Address  
Block  
+ 0  
+ 1  
+ 2  
+ 3  
SSR0 [R/W]  
00001-00  
SIDR0 [R/W]  
XXXXXXXX  
SCR0 [R/W]  
00000100  
SMR0 [R/W]  
00--0-0-  
0000_0060H  
0000_0064H  
0000_0068H  
0000_0048H  
UART0  
U-TIMER0  
UART1  
UTIM0 [R] (UTIMR0 [W])  
00000000 00000000  
DRCL0 [W]  
--------  
UTIMC0 [R/W]  
0--00001  
SSR1 [R/W]  
00001-00  
SIDR1 [R/W]  
XXXXXXXX  
SCR1 [R/W]  
00000100  
SMR1 [R/W]  
00--0-0-  
UTIM1 [R] (UTIMR1 [W])  
00000000 00000000  
DRCL1 [W]  
--------  
UTIMC1 [R/W]  
0--00001  
U-TIMER1  
0000_0070H  
to  
Reserved  
0000_01FCH  
DMACA0 [R/W]  
00000000 00000000 0000XXXX XXXXXXXX  
0000_0200H  
0000_0204H  
0000_0208H  
0000_020CH  
0000_0210H  
0000_0214H  
0000_0218H  
0000_021CH  
0000_0220H  
0000_0224H  
DMACB0 [R/W]  
00000000 00000000 00000000 00000000  
DMACA1 [R/W]  
00000000 00000000 0000XXXX XXXXXXXX  
DMACB1 [R/W]  
00000000 00000000 00000000 00000000  
DMACA2 [R/W]  
00000000 00000000 0000XXXX XXXXXXXX  
DMAC  
DMACB2 [R/W]  
00000000 00000000 00000000 00000000  
DMACA3 [R/W]  
00000000 00000000 0000XXXX XXXXXXXX  
DMACB3 [R/W]  
00000000 00000000 00000000 00000000  
DMACA4 [R/W]  
00000000 00000000 0000XXXX XXXXXXXX  
DMACB4 [R/W]  
00000000 00000000 00000000 00000000  
0000_0228H  
to  
0000_023CH  
Reserved  
DMAC  
DMACR [R/W]  
0XX00000 XXXXXXXX XXXXXXXX XXXXXXXX  
0000_0240H  
0000_0244H  
to  
Reserved  
0000_0300H  
ISIZE [R/W]  
------10  
Instruction  
Cache  
0000_0304H  
(Continued)  
35  
 
Prelminary  
2004.11.12  
MB91401  
Register  
Address  
Block  
+ 0  
+ 1  
+ 2  
+ 3  
0000_0308H  
to  
Reserved  
0000_03E0H  
ICHRC [R/W]  
0-000000  
Instruction  
Cache  
0000_03E4H  
0000_03E8H  
to  
Reserved  
0000_03ECH  
BSD0 [W]  
0000_03F0H  
0000_03F4H  
0000_03F8H  
0000_03FCH  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
BSD1 [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
Bit Search  
Module  
BSDC [W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
BSRR [R]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
0000_0400H  
to  
Reserved  
0000_043CH  
ICR00[R/W]  
---11111  
ICR01[R/W]  
---11111  
ICR02[R/W]  
---11111  
ICR03[R/W]  
---11111  
0000_0440H  
0000_0444H  
0000_0448H  
0000_044CH  
0000_0450H  
0000_0454H  
0000_0458H  
0000_045CH  
0000_0460H  
0000_0464H  
0000_0468H  
ICR04[R/W]  
---11111  
ICR05[R/W]  
---11111  
ICR06[R/W]  
---11111  
ICR07[R/W]  
---11111  
ICR08[R/W]  
---11111  
ICR09[R/W]  
---11111  
ICR10[R/W]  
---11111  
ICR11[R/W]  
---11111  
ICR12[R/W]  
---11111  
ICR13[R/W]  
---11111  
ICR14[R/W]  
---11111  
ICR15[R/W]  
---11111  
ICR16[R/W]  
---11111  
ICR17[R/W]  
---11111  
ICR18[R/W]  
---11111  
ICR19[R/W]  
---11111  
ICR20[R/W]  
---11111  
ICR21[R/W]  
---11111  
ICR22[R/W]  
---11111  
ICR23[R/W]  
---11111  
Interrupt Control  
Unit  
ICR24[R/W]  
---11111  
ICR25[R/W]  
---11111  
ICR26[R/W]  
---11111  
ICR27[R/W]  
---11111  
ICR28[R/W]  
---11111  
ICR29[R/W]  
---11111  
ICR30[R/W]  
---11111  
ICR31[R/W]  
---11111  
ICR32[R/W]  
---11111  
ICR33[R/W]  
---11111  
ICR34[R/W]  
---11111  
ICR35[R/W]  
---11111  
ICR36[R/W]  
---11111  
ICR37[R/W]  
---11111  
ICR38[R/W]  
---11111  
ICR39[R/W]  
---11111  
ICR40[R/W]  
---11111  
ICR41[R/W]  
---11111  
ICR42[R/W]  
---11111  
ICR43[R/W]  
---11111  
(Continued)  
36  
 
Prelminary  
2004.11.12  
MB91401  
(Continued)  
Register  
Address  
Block  
+ 0  
+ 1  
+ 2  
+ 3  
ICR44[R/W]  
---11111  
ICR45[R/W]  
---11111  
ICR46[R/W]  
---11111  
ICR47[R/W]  
---11111  
Interrupt Control  
Unit  
0000_046CH  
0000_0470H  
to  
Reserved  
0000_047CH  
RSRR [R/W]  
10000000*2  
STCR [R/W]  
00110011*2  
TBCR [R/W]  
00XXXX00*1  
CTBR [R/W]  
XXXXXXXX  
0000_0480H  
0000_0484H  
Clock Control  
Unit  
WPR [W]  
XXXXXXXX  
DIVR0 [R/W]  
00000011*1  
DIVR1 [R/W]  
00000000  
Access disallowed  
0000_0488H  
to  
Reserved  
0000_063FH  
ASR0 [R/W]  
00000000 00000000  
ACR0 [R/W]  
0000_0640H  
0000_0644H  
0000_0648H  
0000_064CH  
0000_0650H  
0000_0654H  
0000_0658H  
0000_065CH  
0000_0660H  
0000_0664H  
0000_0668H  
0000_066CH  
1111**00 00000000*3  
ASR1 [R/W]  
XXXXXXXX XXXXXXXX  
ACR1 [R/W]  
XXXXXXXX XXXXXXXX  
ASR2 [R/W]  
XXXXXXXX XXXXXXXX  
ACR2 [R/W]  
XXXXXXXX XXXXXXXX  
ASR3 [R/W]  
XXXXXXXX XXXXXXXX  
ACR3 [R/W]  
XXXXXXXX XXXXXXXX  
ASR4 [R/W]  
XXXXXXXX XXXXXXXX  
ACR4 [R/W]  
XXXXXXXX XXXXXXXX  
ASR5 [R/W]  
XXXXXXXX XXXXXXXX  
ACR5 [R/W]  
XXXXXXXX XXXXXXXX  
ASR6 [R/W]  
XXXXXXXX XXXXXXXX  
ACR6 [R/W]  
XXXXXXXX XXXXXXXX  
ASR7 [R/W]  
XXXXXXXX XXXXXXXX  
ACR7 [R/W]  
XXXXXXXX XXXXXXXX  
Memory IF  
AWR0 [R/W]  
01111111 11111111  
AWR1 [R/W]  
XXXXXXXX XXXXXXXX  
AWR2 [R/W]  
XXXXXXXX XXXXXXXX  
AWR3 [R/W]  
XXXXXXXX XXXXXXXX  
AWR4 [R/W]  
XXXXXXXX XXXXXXXX  
AWR5 [R/W]  
XXXXXXXX XXXXXXXX  
AWR6 [R/W]  
XXXXXXXX XXXXXXXX  
AWR7 [R/W]  
XXXXXXXX XXXXXXXX  
MCRA MCRB  
XXXXXXXX XXXXXXXX  
0000_0670H  
0000_0674H  
0000_0678H  
IOWR0 [R/W]  
XXXXXXXX  
IOWR1 [R/W]  
XXXXXXXX  
IOWR2 [R/W]  
XXXXXXXX  
(Continued)  
37  
 
Prelminary  
2004.11.12  
MB91401  
(Continued)  
Register  
Address  
Block  
+ 0  
+ 1  
+ 2  
+ 3  
0000_067CH  
CSER [R/W]  
00000001  
CHER [R/W]  
XXXXXXX1  
TCR [R/W]  
00000000*1  
0000_0680H  
0000_0684H  
Memory IF  
RCR  
00XXXXXX  
00XXXXXX  
0000_0688H  
to  
Reserved  
0000_0FFCH  
*1 : An initial value is a different register at the reset level. The display is the one at the INIT level.  
*2 : An initial value is a different register at the reset level. The display is due to the INIT level by INITX.  
*3 : An initial value is set by the WTH bit of the mode vector.  
Register  
Address  
Block  
+ 0  
+ 1  
+ 2  
+ 3  
DMASA0 [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
0000_1000H  
0000_1004H  
0000_1008H  
0000_100CH  
0000_1010H  
0000_1014H  
0000_1018H  
0000_101CH  
0000_1020H  
0000_1024H  
DMADA0 [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
DMASA1 [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
DMADA1 [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
DMASA2 [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
DMAC  
DMADA2 [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
DMASA3 [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
DMADA3 [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
DMASA4 [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
DMADA4 [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
0000_1028H  
to  
Reserved  
0000_FFFCH  
38  
 
Prelminary  
2004.11.12  
MB91401  
Register  
Address  
Block  
+ 0  
+ 1  
+ 2  
+ 3  
BSR[R]  
00000000  
BCR[R/W]  
00000000  
CCR[R/W]  
10000000  
ADR[R/W]  
1XXXXXXX  
010F_0000H  
010F_0004H  
DAR[R/W]  
XXXXXXXX  
BC2R[R/W]  
00XX0000  
I2C  
010F_0008H  
to  
(Reserved)  
010F_FFFFH  
Register  
Address  
Block  
+ 0  
+ 1  
+ 2  
+ 3  
DLCR0*  
0X000000  
DLCR1[R, W]  
00000000  
DLCR2*  
00000000  
DLCR3[R/W]  
00000000  
0110_0000H  
0110_0004H  
0110_0008H  
0110_000CH  
0110_0008H  
0110_000CH  
0110_0008H  
0110_000CH  
0110_0010H  
LAN controller  
DLCR4*  
00000010  
DLCR5*  
01000001  
DLCR6*  
10000000  
DLCR7*  
00000000  
DLCR8[R/W]  
00000000  
DLCR9[R/W]  
00000000  
DLCR10[R/W]  
00000000  
DLCR11[R/W]  
00000000  
Bank 0  
Bank 1  
DLCR12[R/W]  
00000000  
DLCR13[R/W]  
00000000  
MAR8[R/W]  
00000000  
MAR9[R/W]  
00000000  
MAR10[R/W]  
00000000  
MAR11[R/W]  
00000000  
MAR12[R/W]  
00000000  
MAR13[R/W]  
00000000  
MAR14[R/W]  
00000000  
MAR15[R/W]  
00000000  
BMPR10*  
00000000  
BMPR11*  
00000111  
BMPR12*  
00000000  
BMPR14*  
00000000  
Bank 2  
BMPR8  
00000000-00000000  
FILTER_CMD  
[R/W]  
00000000-00000000  
0110_0014H  
0110_0018H  
0110_001CH  
0110_0020H  
0110_0024H  
[R/W]  
XXXXXXXX  
FILTER_STATUS  
[R]  
XXXXXXXX  
FILTER_DATA  
[R/W]  
XXXXXXXX  
FL_CONTROL  
[R/W]  
XXXXXXXX  
FL_SUBNET  
[R/W]  
XXXXXXXX  
(Continued)  
39  
 
Prelminary  
2004.11.12  
MB91401  
(Continued)  
Register  
Address  
Block  
+ 0  
SMI_CMD[R/W]  
00000000-00000000  
SMI_CMD_ST  
[R/W]  
00XXXXXX  
SMI_DATA [R/W]  
+ 1  
+ 2  
+ 3  
0110_0028H  
0110_002CH  
SIM IF  
0110_0030H  
0110_0034H  
00000000-00000000  
SMI_POLLINTVL [R/W]  
00000000-00000000  
SMI_PHY_ADD  
0110_0038H  
[R/W]  
00000XXX  
SMI_CONTROL  
[R/W]  
0110_003CH  
0110_0040H  
0110_0044H  
111XXXXX  
SMI_STATUS[R]  
XXXXXXXX  
SIM IF  
SMI_INTENABLE  
[R/W]  
0XXXXXXX  
SMI_MDCDIV  
[R/W]  
0110_0048H  
01011XXX  
* : The attribute is different according to the bit.  
40  
 
Prelminary  
2004.11.12  
MB91401  
Register  
Address  
Block  
+ 0  
+ 1  
EXIFRXDR [R]  
+ 2  
+ 3  
0114_0000H  
0114_0004H  
0114_0008H  
0114_000CH  
0114_0010H  
0114_0014H  
0114_0018H  
0114_001CH  
0114_0020H  
00000000-00000000 00000000-00000000  
EXIFTXDR [W]  
00000000-00000000 00000000-00000000  
EXIFRXR[R]  
00000000-00000000  
EXIFTXR[W]  
00000000-00000000  
External IF  
EXIFCR[W]  
00000000-0XXXXXXX  
EXIFSR[R]  
00000000-00XXXXXX  
EXIFRXSR [R]  
00000000-00000000 00000000-00000000  
EXIFTXSR [R]  
00000000-00000000 00000000-00000000  
PIOCR[R/W]  
00000000  
GPIO  
PIODR[R/W]  
Connecting  
destination  
0114_0024H  
Register  
Address  
Block  
+ 0  
+ 1  
+ 2  
+ 3  
IR[R/W]  
00000000  
DR[R/W]  
10000011  
(Reserved)  
RR[R/W]  
00000000  
0500_03E0H  
0501_0000H  
to  
0501_07FFH  
AMR  
CompactFLASH  
IF  
(Attribute Memory Area : window 0)  
0501_1000H  
to  
0501_17FFH  
CMR  
(Common Memory Area : window 1)  
41  
 
Prelminary  
2004.11.12  
MB91401  
Register  
Address  
Block  
+ 0  
+ 1  
+ 2  
+ 3  
FIFO0out[R]  
XXXXXXXX-XXXXXXXX  
FIFO0in[W]  
XXXXXXXX-XXXXXXXX  
0540_0000H  
0540_0004H  
0540_0008H  
FIFO1[R]  
XXXXXXXX-XXXXXXXX  
FIFO2[W]  
XXXXXXXX-XXXXXXXX  
FIFO3[W]  
XXXXXXXX-XXXXXXXX  
0540_000CH  
to  
(Reserved)  
0540_001FH  
CONT1[R/W]  
XXXXX0XX-XXX00000  
0540_0020H  
0540_0024H  
0540_0028H  
0540_002CH  
0540_0030H  
0540_0034H  
0540_0038H  
CONT2[R/W]  
XXXXXXXX_XXX00000  
CONT3[R/W]  
XXXXXXXX_XXX00000  
CONT4[R/W]  
XXXXXXXX_XXX00000  
CONT5[R/W]  
XXXXXXXX_XXXX00XX  
USB  
CONT6[R/W]  
XXXXXXXX_XXXX00XX  
CONT7[R/W]  
XXXXXXXX_XXX00000  
CONT8[R/W]  
XXXXXXXX_XXX00000  
CONT9[R/W]  
XXXXXXXX_0XXX0000  
CONT10[R/W]  
XXXX0000_X000000X  
TTSIZE[R/W]  
00010001-00010001  
TRSIZE[R/W]  
00010001-00010001  
0540_003CH  
to  
0540_003FH  
(Reserved)  
(Reserved)  
RSIZE0[R]  
XXXXXXXX-XXXX0000  
0540_0040H  
0540_0044H  
RSIZE1[R]  
XXXXXXXX-X0000000  
0540_0048H  
to  
0540_005FH  
ST1[R/W]  
XXXXXX00-00000000  
USB  
0540_0060H  
0540_0064H  
(Continued)  
42  
 
Prelminary  
2004.11.12  
MB91401  
(Continued)  
Register  
Address  
Block  
+ 0  
+ 1  
+ 2  
+ 3  
ST2[R]  
XXXXXXXX-X0000000  
ST3[R/W]  
XXXXXXXX-XXX00000  
0540_0068H  
0540_006CH  
ST4[R]  
XXXXX000-00000000  
ST5[R/W]  
XXXX0XXX-XX000000  
0540_0070H  
to  
0540_007BH  
(Reserved)  
USB  
RESET[R/W]  
XXXXXXXX-XXXXXX00  
0540_007CH  
0540_0080H  
to  
(Reserved)  
0540_FFFFH  
Register  
Address  
Block  
+ 0  
+ 1  
+ 2  
+ 3  
MACRORR[W/R]  
00000000-00000001  
CARDSR[R/W]  
00000000-00000000  
0580_0000H  
0580_0004H  
0580_0008H  
CARDIMR[R/W]  
00000000-00000000  
CARDISR[R]  
00000000-00000000  
Chip Register  
USBPLLRP[R/W]  
00000000-00000000  
43  
 
Prelminary  
2004.11.12  
MB91401  
INTERRUPT VECTOR  
Interrupt number  
Interrupt  
level  
Address of TBR  
Interrupt source  
Offset  
RN  
Hexa-  
Decimal  
default  
decimal  
Reset  
0
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
3FCH  
3F8H  
3F4H  
3F0H  
3ECH  
3E8H  
3E4H  
3E0H  
3DCH  
3D8H  
3D4H  
3D0H  
3CCH  
3C8H  
3C4H  
3C0H  
3BCH  
3B8H  
3B4H  
3B0H  
3ACH  
3A8H  
3A4H  
3A0H  
39CH  
398H  
394H  
390H  
38CH  
388H  
384H  
380H  
37CH  
378H  
000FFFFCH  
000FFFF8H  
000FFFF4H  
000FFFF0H  
000FFFECH  
000FFFE8H  
000FFFE4H  
000FFFE0H  
000FFFDCH  
000FFFD8H  
000FFFD4H  
000FFFD0H  
000FFFCCH  
000FFFC8H  
000FFFC4H  
000FFFC0H  
000FFFBCH  
000FFFB8H  
000FFFB4H  
000FFFB0H  
000FFFACH  
000FFFA8H  
000FFFA4H  
000FFFA0H  
000FFF9CH  
000FFF98H  
000FFF94H  
000FFF90H  
000FFF8CH  
000FFF88H  
000FFF84H  
000FFF80H  
000FFF7CH  
000FFF78H  
Mode vector  
1
System reserved  
2
System reserved  
3
System reserved  
4
System reserved  
5
System reserved  
6
Coprocessor absent trap  
Coprocessor error trap  
INTE instruction  
7
8
9
Instruction break exception  
Operand break trap  
Step trace trap  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
NMI request (tool)  
Undefined instruction exception  
NMI request  
FH fixed  
ICR00  
ICR01  
ICR02  
ICR03  
ICR04  
ICR05  
ICR06  
ICR07  
ICR08  
ICR09  
ICR10  
ICR11  
ICR12  
ICR13  
ICR14  
ICR15  
ICR16  
ICR17  
Ethernet MAC IF  
4
5
8
9
Authentication macro  
IPSec Accelerator/Code macro  
EX IF/GPIO  
USB/I2C/CARD IF  
External interrupt 5  
External interrupt 6  
External interrupt 7  
Reload timer 0  
6
7
Reload timer 1  
Reload timer 2  
UART0 (Reception completed)  
UART1 (Reception completed)  
UART0 (RX completed)  
UART1 (RX completed)  
DMAC0 (end error) Ethernet MAC IF  
DMAC1 (end error) External IF  
DMAC2 (end error) USB  
0
1
2
3
(Continued)  
44  
 
Prelminary  
2004.11.12  
MB91401  
Interrupt number  
Interrupt  
level  
Address of TBR  
Interrupt source  
Offset  
RN  
Hexa-  
Decimal  
default  
decimal  
DMAC3 (end, error)  
DMAC4 (end, error)  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
U-TIMER0  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
40  
41  
42  
43  
ICR18  
ICR19  
ICR20  
ICR21  
ICR22  
ICR23  
ICR24  
ICR25  
ICR26  
ICR27  
ICR28  
ICR29  
ICR30  
ICR31  
ICR32  
ICR33  
ICR34  
ICR35  
ICR36  
ICR37  
ICR38  
ICR39  
ICR40  
ICR41  
ICR42  
ICR43  
ICR44  
ICR45  
ICR46  
ICR47  
374H  
370H  
36CH  
368H  
364H  
360H  
35CH  
358H  
354H  
350H  
34CH  
348H  
344H  
340H  
33CH  
338H  
334H  
330H  
32CH  
328H  
324H  
320H  
31CH  
318H  
314H  
310H  
30CH  
308H  
304H  
300H  
2FCH  
2F8H  
2F4H  
2F0H  
000FFF74H  
000FFF70H  
000FFF6CH  
000FFF68H  
000FFF64H  
000FFF60H  
000FFF5CH  
000FFF58H  
000FFF54H  
000FFF50H  
000FFF4CH  
000FFF48H  
000FFF44H  
000FFF40H  
000FFF3CH  
000FFF38H  
000FFF34H  
000FFF30H  
000FFF2CH  
000FFF28H  
000FFF24H  
000FFF20H  
000FFF1CH  
000FFF18H  
000FFF14H  
000FFF10H  
000FFF0CH  
000FFF08H  
000FFF04H  
000FFF00H  
000FFEFCH  
000FFEF8H  
000FFEF4H  
000FFEF0H  
U-TIMER1  
Timebase timer overflow  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
Delay interrupt source bit  
System reserved (Used by REALOS*)  
System reserved (Used by REALOS*)  
System reserved  
System reserved  
(Continued)  
45  
 
Prelminary  
2004.11.12  
MB91401  
(Continued)  
Interruptnumber  
Interrupt  
level  
Address of TBR  
Interrupt source  
Offset  
RN  
Hexa-  
Decimal  
default  
decimal  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
System reserved  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
2ECH  
2E8H  
2E4H  
2E0H  
2DCH  
2D8H  
2D4H  
2D0H  
2CCH  
2C8H  
2C4H  
2C0H  
000FFEECH  
000FFEE8H  
000FFEE4H  
000FFEE0H  
000FFEDCH  
000FFED8H  
000FFED4H  
000FFED0H  
000FFECCH  
000FFEC8H  
000FFEC4H  
000FFEC0H  
80  
to  
50  
to  
2BCH  
to  
000FFEBCH  
to  
Used by INT instruction  
255  
FF  
000H  
000FFC00H  
(2) NMI (Non Maskable Interrupt)  
NMIs have the highest priority among the interrupt sources handled by this module.  
An NMI is always selected whenever other types of interrupt sources occur at the same time.  
• If an NMI occurs, the interrupt controller passes the information to the CPU :  
Interrupt level : 15 (01111B)  
Interrupt number : 15 (0001111B)  
• NMI detection  
NMIs are set and detected by the external interrupt/NMI controller. This module only generates an interrupt  
level, interrupt number, and MHALTI upon NMI request.  
• Suppressing DMA transfer upon NMI request  
When an NMI request occurs, the MHALTI bit in the HRCL register is set to "1", suppressing DMA transfer. To  
permit DMA transfer, clear the MHALTI bit to "0" at the end of the NMI routine.  
46  
 
Prelminary  
2004.11.12  
MB91401  
ELECTRICAL CHARACTERISTICS  
1. Absolute Maximum Ratings  
Rating  
Remarks  
Parameter  
Symbol  
Unit  
Min  
Max  
I/O  
Internal  
VDDE  
VDDI  
PLLVDD  
VI  
VSS 0.3  
VSS 0.3  
VSS 0.3  
VSS 0.3  
VSS 0.3  
VSS + 4.0  
VSS + 2.5  
VSS + 4.0  
V
V
Power supply  
voltage*1  
Analog power supply voltage  
Input voltage*1  
V
*2  
VDDE + 0.3  
VDDE + 0.3  
T.B.D  
T.B.D  
T.B.D  
T.B.D  
T.B.D  
T.B.D  
T.B.D  
T.B.D  
T.B.D  
70  
V
Output voltage*1  
VO  
V
“L” level maximum output current  
“L” level average output current  
“L” level total maximum output current  
“L” level total average output cur rent  
“H” level maximum output current  
“H” level average output current  
“H” level total maximum output current  
“H” level total average output cur rent  
Power consumption  
IOL  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mW  
°C  
*3  
*4  
IOLAV  
ΣIOL  
ΣIOLAV  
IOH  
*5  
*3  
*4  
IOHAV  
ΣIOH  
ΣIOHAV  
PD  
*5  
Operating temperature  
Ta  
10  
55  
Storage temperature  
Tstg  
150  
°C  
*1 : This parameter is based on VSS = PLLVSS = 0 V.  
*2 : Note that analog power supply voltage and input voltage do not exceed VDDE + 0.3 V at power on.  
*3 : The maximum output current is the peak value for a single pin.  
*4 : The average output current is the average current for a single pin over a period of 100 ms.  
*5 : The total average output current is the average current for all pins over a period of 100 ms.  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
Notes : Apply equal potential to all of the VDDE pins.  
Apply equal potential to all of the VDDI pins.  
Fix all of the VSS pins at 0 V.  
Leave N.C. pins open.  
47  
 
Prelminary  
2004.11.12  
MB91401  
2. Recommended Operating Conditions  
(VSS = PLLVSS = 0 V)  
Value  
Typ  
3.3  
Parameter  
Symbol  
Unit  
Max  
Min  
3.0  
I/O  
Internal  
VDDE  
VDDI  
3.6  
1.95  
V
V
Power supply voltage  
1.65  
1.8  
Analog power supply voltage  
Operating temperature  
PLLVDD  
Ta  
VSS + 3.0  
10  
VDDE  
70.0  
V
°C  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device’s electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representatives beforehand.  
48  
 
Prelminary  
2004.11.12  
MB91401  
3. DC Characteristics  
• Other than USB  
(VSS = PLLVSS = 0 V)  
Value  
Symbol  
Parameter  
Pin  
Conditions  
Unit  
Min  
Typ  
Max  
“H” level input  
voltage  
VIH  
VIL  
VOH  
VOL  
ILI  
2.0  
VDDE + 0.3  
V
V
“L” level input  
voltage  
VSS 0.3  
0.8  
“H” level output  
voltage  
VDDE = 3.0 V,  
IOH = 4.0 mA  
VDDE 0.5  
V
“L” level output  
voltage  
VDDE = 3.0 V,  
IOH = 4.0 mA  
0.4  
V
VDDE = 3.6 V,  
VSS < VI < VDDE  
Input leak current  
Pull-up resistance  
± 5  
µA  
TCK/TRST/TMS/  
TDI/TDO/  
CFCD2X/  
CFCD1X/  
CFVS1X/CFRDY/  
CFWAITX  
RPULU  
10  
10  
33  
33  
80  
80  
kΩ  
kΩ  
Pull-down  
resistance  
RPULD CFRESET  
VDDE  
VDDI = 1.8 V,  
VDDE = 3.3 V,  
fc = 50 MHz  
T.B.D  
T.B.D  
mA  
mA  
Power supply  
current  
ICC  
VDDI  
Without power  
supply  
Input capacitance  
CIN  
18  
pF  
49  
 
Prelminary  
2004.11.12  
MB91401  
USB  
(VSS = PLLVSS = 0 V)  
Value  
Typ  
Symbol  
Remarks  
Parameter  
Pin  
Conditions  
Unit  
Min  
Max  
“H” level output  
voltage  
VOH  
VOL  
IOH  
IOH = − 100 µA  
IOL = 100 µA  
VDDE 0.2  
VDDE  
V
V
“L” level output  
voltage  
0
0.2  
“H” level output  
current  
VOH = VDDE 0.4 V  
VOL = 0.4 V  
20  
20  
mA  
mA  
“L” level output  
current  
IOL  
output short circuit  
current  
IOS  
ILZ  
300  
mA *1  
Input leak current  
± 5  
µA *2  
*1 : <About the output short-circuit current>  
Output short-circuit current IOS is the maximum current that flows when the output pin is connected to VDDE  
or VSS (within the maximum rating) . The current is “the short-circuit current per differential output pin.” As the  
USB I/O buffer is a differential output, the short-circuit current should be considered for both of the output pins.  
Monitor the short-circuit current  
“L” level  
“H” output  
“H” output  
Short-circuited at GND level  
Short-circuited at VDDE level  
3-State Enable "L"  
“H” level  
Monitor the short-circuit current  
3-State Enable "L"  
*2 : <About Measurement of Z leakage current ILZ>  
Input leakage current ILZ is measured with the USB I/O buffer in the high-impedance state when the VDDE  
or VSS voltage is applied to the bidirectional pin.  
Monitor the leakage current  
Z output  
0 V, VDD level applied to output pin  
3-State Enable "H"  
50  
 
Prelminary  
2004.11.12  
MB91401  
USB Specification Revision 1.1  
Parameter  
Value  
Symbol  
Unit  
Remarks  
Min  
Max  
Input Levels  
High (driven)  
VIH  
VIL  
2.0  
V
V
V
V
*1  
Low  
0.8  
2.5  
*1  
*2  
*2  
Diffential Input Sensitivity  
Differential Common Mode Range  
Output Levels  
VDI  
VCM  
0.2  
0.8  
High (driven)  
VOH  
VOL  
0.0  
2.8  
1.3  
0.3  
3.6  
2.0  
V
V
V
*3  
*3  
*4  
Low  
Output Signal Crossover Voltage  
Terminations  
VCRS  
Bus Pull-up Resistor on Upstream Port  
RPU  
1.425  
3.0  
1.575  
3.6  
kΩ  
1.5 kΩ ± 5%  
Termination Voltage for Upstream Port  
Pull-up  
VTERM  
V
*5  
*1 : <Input Levels VIH, VIL>  
The switching threshold voltage of the USB I/O buffer’s single-end receiver is set within the range from  
VIL (Max) = 0.8 V to VIH (Min) = 2.0 V (TTL input standard) .  
For VIH and VIL, the LSI has some hysteresis to reduce noise susceptibility.  
*2 : <Input Levels VDI, VCM>  
A differential receiver is used to receive USB differential data signals.  
The differential receiver has a differential input sensitivity of 200 mV when the differential data input falls within  
the range from 0.8 V to 2.5 V with respect to the local ground reference level.  
The above voltage range is referred to as common-mode input voltage range.  
1.0  
0.2  
0.8  
2.5  
Common mode input voltage (V)  
*3 : <Output Levels VOL, VOH>  
The output driving performance levels of the driver are 0.3 V or less (to 3.6-V, 1.5 kload) in the low  
state (VOL) and 2.8 V or more (to ground, 1.5 kload) in the high state (VOH) .  
51  
 
Prelminary  
2004.11.12  
MB91401  
*4 : <Output Levels VCRS>  
The cross voltage of the external differential output signals (D+ and D) falls within the range from 1.3 V to 2.0 V.  
D+  
Max 2.0 V  
VCRS standard range  
Max 1.3 V  
D−  
*5 : <Terminations VTERM>  
VTERM indicates the pull-up voltage at the upstream port.  
52  
 
Prelminary  
2004.11.12  
MB91401  
4. AC Characteristics  
The following measurement conditions depending on the supply voltage apply to the MB91401 unless otherwise  
specified.  
AC measurement condition  
Input  
Output  
VCC  
VCC  
VIH  
VOH  
VIL  
VOL  
0 V  
0 V  
VIH  
VDDE × 0.8  
VDDE × 0.2  
VOH  
VOL  
VDDE/2  
VIL  
VDDE/2  
Load condition  
C = 55 pF  
(1) Clock  
Value  
Parameter  
Symbol  
Pin  
Conditions  
Unit Remarks  
Min  
Max  
Fclkcyc  
Fclkcyc  
XINI  
External clock  
Oscillation  
10.0  
50.0  
MHz  
MHz  
Input clock frequency  
OSCEA,  
OSCEB  
10.0  
50.0  
Internal operating clock frequency  
(FR70E/peripheral module)  
Fclkin  
Fusop  
Fi2op  
50.0  
48.0  
MHz  
MHz  
*
Internal operating clock frequency  
(USBC)  
Internal operating clock frequency  
(I2C IF)  
12.5  
50.0  
MHz  
MHz  
External memory clock frequency  
MCLKO  
* : The clock frequency must be set to over 25 MHz for the Ethernet MAC interface to perform 100 Base  
communication.  
Fclkcyc  
XINI  
OSCEA/OSCEB  
53  
 
Prelminary  
2004.11.12  
MB91401  
(2) Reset  
Value  
Symbol  
Parameter  
Pin  
Conditions  
Unit Remarks  
Min  
Max  
After power At unusing of PLL  
supply &  
5 tcp  
ns  
µs  
µs  
Reset input time  
trstl  
INITXI  
PLLS  
At using of PLL 600 + 1  
input clock  
PLL reset input time tprstl  
At using of PLL  
1
stabilization  
Note : tcp is internal CPU and clock cycle period for peripheral module.  
trstl, tprstl  
INITXI  
PLLS  
54  
 
Prelminary  
2004.11.12  
MB91401  
(3) Normal memory access  
Value  
Parameter  
Symbol  
Pin  
Typical timing  
Unit Remarks  
Min  
0
Max  
Address delay time  
CSX delay time  
CSX delay time  
WRX delay time  
WRX delay time  
Data delay time  
RDX delay time  
RDX delay time  
Data setup  
tchav  
tchcsl  
A23 to A0  
MCLKO ↑  
MCLKO ↑  
MCLKO ↑  
MCLKO ↑  
MCLKO ↑  
MCLKO ↑  
MCLKO ↑  
MCLKO ↑  
MCLKO ↑  
MCLKO ↑  
tcycp / 2 + 7 ns  
tcycp / 2 + 7 ns  
tcycp / 2 + 7 ns  
CSX2 to CSX0  
0
tchcsh CSX2 to CSX0  
tchwrl WRX3 to WRX0  
tchwrh WRX3 to WRX0  
0
1  
1  
0
9
9
ns  
ns  
tchdv  
tchrdl  
tchrdh  
tdsrh  
D31 to D0  
RDX  
tcycp / 2 + 7 ns  
1  
1  
19  
1  
9
9
ns  
ns  
ns  
ns  
RDX  
D31 to D0  
D31 to D0  
Data hold  
trhdx  
Note : tcycp is external memory clock cycle period.  
tcycp  
MCLKO  
tchav  
A23 to A0  
tchcsl  
tchcsh  
CSX2 to CSX0  
tchwrl  
tchwrh  
WRX3 to WRX0  
D31 to D0  
tchdv  
tchrdl  
tchrdh  
RDX  
tdsrh  
D31 to D0  
trhdx  
55  
 
Prelminary  
2004.11.12  
MB91401  
(4) Ready input  
Parameter  
Value  
Symbol  
Pin  
Typical timing  
Unit Remarks  
Min  
19  
Max  
RDY setup  
RDY hold  
trdys  
trdyh  
RDY  
RDY  
MCLKO ↑  
MCLKO ↑  
ns  
ns  
1  
MCLKO  
RDY  
trdys  
trdys  
trdyh  
trdyh  
56  
 
Prelminary  
2004.11.12  
MB91401  
(5) UART  
Value  
Parameter  
Symbol  
Pin  
Conditions  
Unit Remarks  
Min  
Max  
Serial clock  
cycle time  
tscyc  
tslov  
tivsh  
tshix  
tshsl  
tslsh  
tslov  
tivsh  
tshix  
SCK1, SCK0  
SOUT1, SOUT0  
SIN1, SIN0  
8 × timcycp  
80  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK →  
SOUT delay time  
80  
Internal  
shift clock  
mode  
Valid SIN →  
SCLK ↑  
100  
SCLK →  
valid SIN hold time  
SIN1, SIN0  
60  
Serial clock  
“H” Pulse Width  
SCK1, SCK0  
SCK1, SCK0  
SOUT1, SOUT0  
SIN1, SIN0  
4 × timcycp  
4 × timcycp  
Serial clock  
“L” Pulse Width  
External  
shift clock  
mode  
SCLK →  
SOUT delay time  
150  
Valid SIN →  
SCLK ↑  
60  
60  
SCLK →  
valid SIN hold time  
SIN1, SIN0  
Note : timcycp is operational clock period of peripheral module built-in FR70E core.  
57  
 
Prelminary  
2004.11.12  
MB91401  
Internal shift clock mode  
SCK1, SCK0  
tscyc  
VOH  
VOL  
VOL  
tslov  
SOUT1, SOUT0  
SIN1, SIN0  
tshix  
tivsh  
External shift clock mode  
tslsh  
tshsl  
SCK1, SCK0  
tslov  
SOUT1, SOUT0  
SIN1, SIN0  
tshix  
tivsh  
58  
 
Prelminary  
2004.11.12  
MB91401  
(6) MII interface  
Parameter  
Value  
Symbol  
Pin  
Typical timing  
Unit Remarks  
Min  
0
Max  
15  
TXEN delay time  
TXD delay time  
RXDV setup time  
RXSV Hold Time  
RXD setup time  
RXD Hold Time  
RXERsetup time  
RXER Hold Time  
tdel_txen  
tdel_txd  
tsu_rxdv  
thd_rxdv  
tsu_rxd  
TXEN  
TXD3 to TXD0  
RXDV  
TXCLK ↑  
TXCLK ↑  
RXCLK ↑  
RXCLK ↑  
RXCLK ↑  
RXCLK ↑  
RXCLK ↑  
RXCLK ↑  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
15  
2
RXDV  
3
RXD3 to RXD0  
2
thd_rxdv RXD3 to RXD0  
3
tsu_rxer  
thd_rxer  
RXER  
RXER  
2
3
Transmission  
TXCLK  
tdel_txen  
TXEN  
X
5
5
TXD3 to TXD0  
tdel_txd  
TXCLK  
TXEN  
tdel_txen  
n1  
n
X
TXD3 to TXD0  
tdel_txd  
59  
 
Prelminary  
2004.11.12  
MB91401  
Reception  
RXCLK  
RXDV  
thd_rxdv  
tsu_rxdv  
thd_rxdv  
RXD3 to RXD0  
0
5
5
tsu_rxd  
RXCLK  
RXDV  
thd_rxdv  
tsu_rxdv  
tsu_rxd  
n1  
n
0
RXD3 to RXD0  
thd_rxdv  
RXCLK  
RXER  
tsu_rxer  
thd_rxer  
tsu_rxer  
thd_rxer  
60  
 
Prelminary  
2004.11.12  
MB91401  
(7) MDIO interface  
Parameter  
Value  
Symbol  
Pin  
typical timing  
Unit Remarks  
Min  
10  
0
Max  
MDIO setup time  
MDIO Hold Time  
MDIO delay time  
tsu_mdio  
thd_mdio  
tdel_mdio  
MDIO  
MDIO  
MDIO  
MDCLK ↑  
MDCLK ↑  
MDCLK ↑  
ns  
ns  
ns  
10  
30  
30  
MDIO switching time  
(IN OUT)  
tdel_turnon  
tdel_turnoff  
MDIO  
MDIO  
MDCLK ↑  
MDCLK ↑  
10  
10  
ns  
ns  
MDIO switching time  
(OUT IN)  
30  
MDCLK  
tsu_mdio  
thd_mdio  
MDIO (INPUT)  
tsu_mdio  
thd_mdio  
MDCLK  
MDIO (OUTPUT)  
tdel_mdio  
tdel_mdio  
MDCLK  
Input Mode  
Output Mode  
MDIO  
(INPUT OUTPUT)  
tdel_turnon  
MDCLK  
Output Mode  
Input Mode  
MDIO  
(OUTPUT INPUT)  
tdel_turnoff  
61  
 
Prelminary  
2004.11.12  
MB91401  
(8) External IF  
Read access  
Value  
Parameter  
Symbol  
Pin  
Unit  
Remarks  
Min  
Max  
EX Read Cycle time  
EXA to Data Valid  
texrc  
texadv  
texcsdv  
texdoe  
texdhz  
EXA, EXCSX  
EXA, EXD  
6 × tcp  
5 × tcp  
5 × tcp  
5 × tcp  
ns  
ns  
ns  
ns  
ns  
EXCSX to Data Valid  
EXRDX to Data Out Enable  
EXRDX “H” to High Z  
EXCSX, EXD  
EXRDX, EXD  
EXRDX, EXD  
5 × tcp + 8  
Note : tcp is internal CPU and operational clock period for peripheral module.  
texrc  
texadv  
EXA  
texcsdv  
EXCSX  
EXWRX  
texdoe  
EXRDX  
EXD15: to EXD0  
texdhz  
62  
 
Prelminary  
2004.11.12  
MB91401  
Write access  
Value  
Parameter  
Symbol  
Pin  
Unit  
Remarks  
Min  
5 × tcp  
4 × tcp  
4 × tcp  
4 × tcp  
11  
Max  
EX Write Cycle time  
EXA to Data Setup time  
EXCSX to Data Setup time  
EXWRX “L” Pulse width  
EXD Setup time  
texwc  
texads  
texcsds  
texwp  
texds  
EXA, EXCSX  
EXA, EXD  
ns  
ns  
ns  
ns  
ns  
ns  
EXCSX, EXD  
EXRDX, EXD  
EXRDX, EXD  
EXRDX, EXD  
EXD Hold time  
texdh  
0
Note : tcp is internal CPU and operational clock period for peripheral module.  
texwc  
texads  
EXA  
texcsds  
EXCSX  
texwp  
EXWRX  
texds  
tchdv  
EXD15 to EXD0  
texdhz  
EXRDX  
63  
 
Prelminary  
2004.11.12  
MB91401  
(9) USB interface  
Parameter  
Value  
Typ  
Symbol  
Pin  
Unit  
Remarks  
Min  
Max  
Input clock  
RISE Time  
Fall Time  
tucyc  
tutfr  
UCLK48  
UDP, UDM  
UDP, UDM  
48*1  
MHz 2500ppm accuracy*1  
4
4
20  
20  
ns *2  
ns *2  
tutff  
Differential Rise and Fall  
Timing Matching  
tutfrfm UDP, UDM  
tzdrv UDP, UDM  
90  
28  
111.11  
44  
%
*2  
*3  
Driver Output Resistance  
tucyc  
UCLK48  
UDP  
UDM  
90%  
90%  
10%  
10%  
tutfr  
tutff  
*1 : The AC characteristics of the USB interface conform to USB Specification Revision 1.1.  
*2 : <Driver Characteristics TFR, TFF, TFRFM>  
These items specify the differential data signal rise (trise) and fall (tfall) times.  
These are defined as the times between 10% to 90% of the output signal voltage.  
For the full-speed buffer, trise and tfall are specified such that the tr/tf ratio falls within ± 10% to minimize RFI  
radiation.  
*3 : <Driver Characteristics ZDRV>  
USB full-speed connection is performed via a shielded twisted-pair cable at a characteristic impedance of  
90 Ω ± 15%. The USB Standard stipulates that the USB driver’s output impedance must be within the range  
of 28 to 44. The USB Standard also stipulates that a discrete serial resistor (RS) must be added to have  
balance while satisfying the above standard.  
The output impedance of the USB I/O buffer on this LSI is about 3 to 19 . Serial resistor RS to be added  
must be 25 to 30 (27 recommended) .  
Capacitor CL of 50 pF must be added as well.  
64  
 
Prelminary  
2004.11.12  
MB91401  
Full-speed Buffer  
Rs  
28 to 44 Equiv. Imped  
28 to 44 Equiv. Imped  
T×D+  
CL = 50 pF  
Rs  
T×D−  
CL = 50 pF  
3-State  
Notes : Driver output impedance 3 to 19 Ω  
Rs series resistance: 25 to 30 Ω  
Add a series resistor of preferably 27 Ω  
65  
 
Prelminary  
2004.11.12  
MB91401  
(10) I2C interface  
Input timing specification  
Value  
Parameter  
Symbol  
Pin  
Unit  
Remarks  
Min  
250  
0
Max  
SDA input setup time  
SDA input hold time  
SCL cycle time  
ts2sdai  
th2sdai  
tcscli  
SDA  
SDA  
SCL  
SCL  
SCL  
SCL  
SCL  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
*
*
*
*
*
*
*
10  
4
SCL input “H” pulse time  
SCL input “L” pulse time  
SCL input setup time  
SCL input hold time  
twhscli  
twlscli  
ts2scli  
th2scli  
4.7  
4
4.7  
* : Initial Value : I2C bus standards.  
STOP START  
RESTART  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ACK  
ts2scli  
SDA(input)  
ts2scli  
th2scli  
ts2sdai  
th2sdai  
th2scli  
SCL(input)  
tcscli  
twhscli  
twlscli  
Output timing specification  
Value  
Parameter  
Symbol  
Pin  
Unit  
Remarks  
Min  
Max  
SCL output cycle time  
SCL output “H” Pulse Time  
SCL output “L” Pulse Time  
SCL output setup time  
SCL output hold time  
tcsclo  
twhsclo  
twlsclo  
ts2sclo  
th2sclo  
th2sdao  
SCL  
SCL  
SCL  
SCL  
SCL  
SDA  
(2 × m) + 2  
m + 2  
m
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
*
*
*
*
*
*
m + 2  
m × 2  
5
SDA output hold time  
* : For value m, refer to Section 7.5.2.3 “Clock Control Register (CCR) in the I2C Interface Specifications.” PCLK  
indicates I2C interface operating clock frequency.  
STOP  
START  
RESTART  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ACK  
SDA (output)  
ts2sclo  
th2sclo  
th2sdao  
ts2sclo  
th2sclo  
SCL (output)  
tcsclo  
twhsclo  
twlsclo  
66  
 
Prelminary  
2004.11.12  
MB91401  
(11) Card IF  
Read access  
Value  
Parameter  
Symbol  
Pin  
Unit Remarks  
Min  
Max  
CFA10 to CFA0,  
CFCE2X, CFCE1X  
CF Read Cycle time  
CFA to Data Valid  
CFCEX to Data Valid  
tcfrc  
tcfadv  
tcfcedv  
tcfdoe  
ns  
ns  
ns  
ns  
ns  
CFA10 to CFA0,  
CFD15 to CFD0  
CFCE2X, CFCE1X,  
CFD15 to CFD0  
CFOEX CFIORDX to Data Out  
Enable  
CFOEX, CFIORDX,  
CFD15 to CFD0  
CFOEX, CFIORDX,  
CFD15 to CFD0  
CFOEX CFIORDX “H” to High Z tcfdhz  
tcfrc  
tcfadv  
CFA10 to CFA0  
tcfcedv  
CFCE2X, CFCE1X  
CFWEX, CFIOWRX  
tcfdoe  
CFOEX, CFIORDX  
CFD15 to CFD0  
tcfdhz  
67  
 
Prelminary  
2004.11.12  
MB91401  
Write access  
Value  
Parameter  
Symbol  
Pin  
Unit Remarks  
Min  
Max  
CFA10 to CFA0,  
CFCE2X, CFCE1X  
CF Write Cycle time  
tcfwc  
tcfads  
tcfceds  
ns  
ns  
ns  
ns  
ns  
ns  
CFA10 to CFA0,  
CFD15 to CFD0  
CFA to Data Setup time  
CFCEX to Data Setup time  
CFCE2X, CFCE1X,  
CFD15 to CFD0  
CFWEX CFIOWRX “L” Pulse  
width  
tcffwp CFWEX, CFIOWRX  
CDWEX, CFIOWRX,  
tcfds  
CFD Setup time  
CFD Hold time  
CFD15 to CFD0  
CDWEX, CFIOWRX,  
tcfdhz  
CFD15 to CFD0  
tcfwc  
tcfads  
CFA10 to CFA0  
tcfceds  
CFCE2X, CFCE1X  
tcffwp  
tcfds  
CFWEX, CFIOWRX  
CFD15 to CFD0  
tcfdhz  
CFOEX, CFIORDX  
68  
 
Prelminary  
2004.11.12  
MB91401  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
240-pin plastic FBGA  
(BGA-240P-M01)  
MB91401  
69  
 
Prelminary  
2004.11.12  
MB91401  
PACKAGE DIMENSION  
240-pin plastic FBGA  
(BGA-240P-M01)  
Note: The actual shape of coners may differ from the dimension.  
240-¯0.30±0.10  
(240-¯.012±.004)  
M
0.05(.002)  
10.00±0.10(.394±.004)SQ  
1.13 +0.20  
(Mounting height)  
Ð0.10  
.044 +.008  
Ð.004  
0.50(.020)  
TYP  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
9.00(.354)  
REF  
0.10(.004)  
INDEX  
8
7
6
5
4
3
2
1
(INDEX AREA)  
W V U T R P N M L K J H G F E D C B A  
0.25±0.10  
(.010±.004)  
(Stand off)  
C
1999 FUJITSU LIMITED B240001S-2C-2  
Dimensions in mm (inches).  
Note : The values in parentheses are reference values.  
70  
 
Prelminary  
2004.11.12  
MB91401  
MEMO  
71  
 
Prelminary  
2004.11.12  
MB91401  
FUJITSU LIMITED  
For further information please contact:  
All Rights Reserved.  
Japan  
The contents of this document are subject to change without notice.  
Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
FUJITSU LIMITED  
Marketing Division  
The information, such as descriptions of function and application  
circuit examples, in this document are presented solely for the  
purpose of reference to show examples of operations and uses of  
Fujitsu semiconductor device; Fujitsu does not warrant proper  
operation of the device with respect to use based on such  
information. When you develop equipment incorporating the  
device based on such information, you must assume any  
responsibility arising out of such use of the information. Fujitsu  
assumes no liability for any damages whatsoever arising out of  
the use of the information.  
Electronic Devices  
Shinjuku Dai-Ichi Seimei Bldg. 7-1,  
Nishishinjuku 2-chome, Shinjuku-ku,  
Tokyo 163-0721, Japan  
Tel: +81-3-5322-3353  
Fax: +81-3-5322-3386  
North and South America  
FUJITSU MICROELECTRONICS AMERICA, INC.  
1250 E. Arques Avenue, M/S 333  
Sunnyvale, CA 94088-3470, U.S.A.  
Tel: +1-408-737-5600  
Any information in this document, including descriptions of  
function and schematic diagrams, shall not be construed as license  
of the use or exercise of any intellectual property right, such as  
patent right or copyright, or any other right of Fujitsu or any third  
party or does Fujitsu warrant non-infringement of any third-party’s  
intellectual property right or other right by using such information.  
Fujitsu assumes no liability for any infringement of the intellectual  
property rights or other rights of third parties which would result  
from the use of information contained herein.  
Fax: +1-408-737-5999  
Europe  
FUJITSU MICROELECTRONICS EUROPE GmbH  
Am Siebenstein 6-10,  
The products described in this document are designed, developed  
and manufactured as contemplated for general use, including  
without limitation, ordinary industrial use, general office use,  
personal use, and household use, but are not designed, developed  
and manufactured as contemplated (1) for use accompanying fatal  
risks or dangers that, unless extremely high safety is secured, could  
have a serious effect to the public, and could lead directly to death,  
personal injury, severe physical damage or other loss (i.e., nuclear  
reaction control in nuclear facility, aircraft flight control, air traffic  
control, mass transport control, medical life support system, missile  
launch control in weapon system), or (2) for use requiring  
extremely high reliability (i.e., submersible repeater and artificial  
satellite).  
D-63303 Dreieich-Buchschlag,  
Germany  
Tel: +49-6103-690-0  
Fax: +49-6103-690-122  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE LTD.  
#05-08, 151 Lorong Chuan,  
New Tech Park,  
Singapore 556741  
Please note that Fujitsu will not be liable against you and/or any  
third party for any claims or damages arising in connection with  
above-mentioned uses of the products.  
Tel: +65-6281-0770  
Fax: +65-6281-0220  
Any semiconductor devices have an inherent chance of failure. You  
must protect against injury, damage or loss from such failures by  
incorporating safety design measures into your facility and  
equipment such as redundancy, fire protection, and prevention of  
over-current levels and other abnormal operating conditions.  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Law of Japan, the prior  
authorization by Japanese government will be required for export  
of those products from Japan.  
Korea  
FUJITSU MICROELECTRONICS KOREA LTD.  
1702 KOSMO TOWER, 1002 Daechi-Dong,  
Kangnam-Gu,Seoul 135-280  
Korea  
Tel: +82-2-3484-7100  
Fax: +82-2-3484-7111  
2004 FUJITSU LIMITED Printed in Japan  
 

Clover Electronics Water Dispenser B7A User Manual
ColdTech Refrigerator CFD 1F User Manual
Crown Audio Stereo Amplifier BF 6000 SUX User Manual
Dacor Food Warmer ERWD27 User Manual
Danby Refrigerator DAR0488BL User Manual
Digicom Network Router 8E4087 User Manual
Dymo Printer XR User Manual
Dyson Vacuum Cleaner DC03 User Manual
EdgeStar Dehumidifier DEP400EW User Manual
Fender Musical Instrument Amplifier FM 65 DSP User Manual